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FOREWORD

This report contains the final results of the studies conducted under
Contract NAS2-3918, Technological Requirements Common to Manned
This report consists of five volumes. The first volume

Planetary Missions.

(SD 67-621-1) summarizes the study results.
the study are presented in the following volumes:
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INTRODUCTION

The environmental control and life support subsystem, communications
subsystem, electrical power subsystem, and propulsion subsystem analyses
which were conducted during the study are reported in this volume. Candidate
environmental control and life support subsystems are defined in terms of
weight, volume, and electrical power requirements for all manned modules.
This includes the Earth reentry module, mission module, and both ascent
and descent stages of the planetary excursion module. Several types of
communications techniques are compared parametrically, and the range of
power requirements is established. Propulsion subsystem weight scaling
equations are developed and the characteristics of candidate propellants
established. All promising power generation (including nuclear reactor,
radioisotope, and solar) and conversion system combinations are compared.
Weights, volumes, and areas are provided along with qualitative analyses
of the integration factors.

LIFE SUPPORT SUBSYSTEM PARAMETRIC ANALYSIS

Scaling equations were established for weight synthesis and for testing
the sensitivity of the spacecraft modules to the type of environmental control
and life support subsystem (EC/LSS) used in their design. Equations for
weight, volume, and power requirements were developed for Earth reentry
modules (ERM), planetary excursion modules (PEM) ascent and descent
stages, and for mission modules (MM). These equations are valid for crew
sizes from 2 to 16 for the PEM's and for crew sizes from 4 through 20 for
MM's and ERM's. These equations are suitable for mission durations up to
24 hours for ERM's and PEM ascent stages, up to 90 days for PEM descent
stages, and up to 1500 days for MM's,

The equations represent three degrees of closure: open; water recovery
only; and water and oxygen recovery. The production of food was investi-
gated but rejected for reasons explained below. Separate equations were
established for the various elements of the environmental control and life
support system as follows: crew and crew support; furniture and house-
keeping; food management; water supply or recovery; waste management
temperature and humidity control; atmospheric purification; atmospheric
supply or recovery; and instruments and controls. The detailed elements
that comprise each of these major categories are defined later. The

-1 -
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equations discussed in this report, in general, were developed earlier for
other programs; therefore, only changes and the rationale for these changes
are discussed in this report. The basic equations for the ERM's and PEM
ascent stages and the open system and the water and oxygen recovery system
for the MM's and PEM descent stages were generated by NASA, Mission
Analysis Division, and were either modified by mutual agreement or corrob-
orated by parametric data used by NR for other studies. The long-duration
(over 90 days) open system and the water recovery only system were gen-
erated during this study. '

REQUIREMENTS

This section discusses the requirements, ground rules, and assump-
tions upon which the equations are based. They are presented so that the
equations may be applied correctly.

Operational Duration

It was assumed that the ERM's and the PEM ascent stages will be
occupied for no more than 24 hours, and will therefore use open-type life
support subsystems. The PEM descent stages, which include the living
quarters while on the planetary surface, are assumed to be occupied by a
crew of up to 16 men for durations up to 90 days. Mission module occupancy
times vary from approximately 300 days to 1500 days.

Man's Daily Balance

Two factors significantly effect the input and output quantities for man's
daily balance: metabolic load and wash water. Metabolic rates in the ranges
discussed in this report are assumed to effect only the perspired water since
studies have shown that the food and oxygen intake quantities vary only slightly
with changes in the metabolic rate. Table 1 shows man's daily balance which
reflects the ground rules for metabolic rate and wash water discussed in the
following paragraphs. The more fully closed ecological systems also use the
same metabolic rate and wash water requirements established for the open
system for mission durations greater than 90 days.

Metabolic Rate

Two levels of metabolic rate were established; 136 watts (11, 200 Btu/
man-day) for missions of less than 90 days where crew members are rela-
tively restrained in their motions, and 166 watts (13, 600 Btu/man-day) for
missions longer than 90 days where larger free volume permits higher crew
activities. In recent studies, such as the Mars/Venus Flyby (Reference 1),
a metabolic load of 166 watts (13, 600 Btu/man-day) was used. This may be

’
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Table 1. Life Suppo;'t Daily Balance

Open System

Water and Oxygen

Water Recovery

<90 Days >90 Days Recovery Only
Man's Daily Balance Pounds|{Kilogram| Pounds (Kilogram| Pounds[Kilogram |Pounds Kilogram
Input:
Food 1. 40 0. 64 1. 40 0.6 1,40 0. 64 1. 40 0. 64
Oxygen 2. 00 0.91 2.00 0.91 2.00 0.91 2.00 0.91
Water:
Drinking 4. 00 1.82 7.70 3.50 7.70 3.50 7.70 3.50
Reconstituting Food 2. 00 0.91 2.00 0.91 2,00 0. 91 2.00 0,91
Washing 3.00 1, 36 10,00 4.54 | 10,00 4.54 10. 00 4.54
Total 12. 40 5. 64 23.10 10.50 | 23,10 10. 50 23.10 10. 50
Output:
Feces 0. 30 0,14 0. 30 0,14 0. 30 0,14 0. 30 0.14
Urine 3.25 1, 48 3.25 1.48 3,25 1.48 3,25 1.48
Carbon Dioxide 2.25 (. 1,02 2,25 1.02 2.25 1.02 2,25 1,02
Water:
Exhaled and 2,00 0. 91 2,00 0.91 2.00 0. 91 2.00 0.91
Perspired 1. 60 0.73 5. 30 2.41 5. 30 2.41 5. 30 2.41
Washing 3. 00 1, 36 10. 00 4.54 | 10,00 4. 54 10. 00 4.54
Total 12, 40 5.63 23.10 10.50 | 23.10 10.50 23.10 10.50
Recovery System Daily Balance
Input: “Not Applicable Not Applicable
Carbon Dioxide 2,25 1,02
Water: Urine 3.25 1,48 3.25 1.48
Exhaled and perspired 7.30 3.32 7. 30 3. 32
Wash 10.00 4. 54 10. 00 4. 54
Total 22,80 10. 36 20,55 9. 34
Output:
Oxygen:
Carbon Dioxide 1. 64 0.74
Water . 36 0.16
Water:
Urine 2,92 1.33 2,92 1,33
Exhaled and perspired 6.94 3. 16 7.22 3,28
Wash 9. 80 4, 45 9.93 4.51
Wastes:
Urine 0.33 0,15 0.33 0.15
Exhaled and perspired water 0.08 0.04 0,08 0. 04
Wash water 0.07 0.03 0.07 0.03
Hydrogen 0.05 0. 02
Carbon 0.61 0.28
Total 22, 80 10,36 | 20,55 9. 34

SD 67-621-4




representative of the activity in the MM where a free volume of 750 cubic feet
per man was established as the nominal value for this study. This metabolic
rate allows for the exercise and equipment maintenance required for long-
duration missions. It is representative of an activity level of slightly above
sitting effort or light factory bench work and slightly lower than light work
or standing, whereas the 136 watts (11, 200 Btu/man-day) is typical of that
experienced in Gemini flights and expected in Apollo flights. At 297 K (75 F)
the sensible load for 166 watts (13, 600 Btu/man-day) becomes 73.2 watts
(600 Btu/man-day) and a latent heat load of 88 watts (720 Btu/man-day).

This increased latent load would increase man's drinking water input over
that required for the Gemini and Apollo type missions by about 50 percent.

Wash Water

Wash water quantity is generally an arbitrary value and almost any
value can be selected, depending on usage requirements such as personal
hygiene, type and amount of clothing and associated laundry requirements
(if any) and general psychological well being of the crew. For mission
durations up to 90 days, the wash water requirement has been established
as 1.36 kilograms/man-day (3 1lbs/man-day) and for missions over 90 days
4,53 kilograms/man-day (10 lbs/man-day) was selected as being more
representative of the long duration missions.

Emergency Supply Requirements

The requirement for an emergency supply of oxygen and water was
assumed. This requirement was satisfied for oxygen by providing a separate
oxygen supply for 30 days. This includes tankage, piping, and controls.
This supply can be used while the main system is being serviced or repaired,
or during other similar emergencies. As for water, an emergency supply
of water (metabolic only) for 10 days was provided. This water can also
be used during short periods when the recovery system is not in operation or
to account for a reduction in recovery efficiency. The reserve water supply
is normally an arbitrary value selected on the basis of the degree of pro-
tection that is desired. Ten days was selected as representative of typical
planetary missions. This could provide for deactivation of the water recov-
ery system during the high crew activity period at planet encounter, reducing
somewhat the high peak demand from the electrical power system.

Leakage
The number of times airlocks are utilized and the amount of air leaking
through the cabin walls, seals, and throughputs, affect the life support sub-

system requirements. The frequency of which the cabin may be repressurized
also affects the subsystem. The atmosphere is assumed to be a 50-50 mixture

SD 67-621-4



of oxygen and nitrogen at 7 psi total pressure. The leak rate and cabin
repressurization criteria are as follows:

Oxygen: 6.82 x 104 kilograms/meterz-day
(1.4 x 10-% pound/square foot-day)

Nitrogen: 7.80 x 10-4 kilograms/meterz-day
' (1.6 x 10-4 pound/square foot-day)

Airlocks: 2 refills per day
Repressurization: Refill cabin volume each 180 days

These leak rates are considerably lower than the rates presently being
measured for the Gemini and Apollo modules. However, they are of the
same order of magnitude as those in current laboratory vacuum systems,
and it is anticipated that similar leakage characteristics may be obtained by
careful design and manufacturing procedures. The leakage rates are based
on molecular diffusion of Oz and N,. As for the airlock makeup, it was
assumed that at least 50 percent of the gas in the airlock can be recovered
by pumping it back into the system.

Feces

The requirement was assumed that the feces be either stored on the
spacecraft or processed and ejected from the spacecraft in such a way that
it will not impact nor contaminate any of the planetary bodies. The scaling
laws presented herein are based on the storage of the processed (e.g.,
vacuum dried) feces in empty food canisters.

Storage

The scaling laws for the atmospheric supply are based on storage of
gases in a cryogenic state.

Electrical Power Requirements

Electrical power demands for the environmental control and life
support elements are provided, but weights amd volume penalties for the
power subsystem to furnish this power has not been included in the scaling
laws. These weights are included in the power subsystem scaling laws dis-
cussed in a subsequent section of this Appendix.
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ENVIRONMENTAL CONTROL/LIFE SUPPORT SUBSYSTEM COMPONENTS

Table 2 shows the components that were included in the scaling laws.
The values used are sufficient to account for small items not specifically
itemized in this table.

EC/LSS for ERM and PEM Ascent Stage

The environmental control and life support subsystem for the ERM and
PEM ascent stage is divided into two categories for simplicity, ''crew and
seats' and ''life support.' Weights and volumes for these elements are shown
parametrically in Figures 1 and 2 which are valid for occupancy times of no
more than 24 hours. Power requirements are assumed to be negligible and
are therefore not isolated from other loads. Both the weight and volume
for the life support subsystem increase linearly with increased crew size,
as does the weight for the crew and seats. Volume for crew and seats is
shown as zero because it is provided inherently in the mission module
free volume.

EC/LSS for MM and PEM Descent Stage

The scaling laws for the MM and PEM descent stage are shown in
Tables 3 through 5 for weight, volume and power, respectively. The four
different systems are shown on each chart for comparison. For purposes of
simplicity, the open life support system for durations of less than 90 days
is shown as the baseline system; only the differences from the baseline
system are shown for the other systems.

As can be seen in Tables 3 through 5 the scaling equations are divided
into four factors representing: the fixed elements; those elements which
vary as a function of the crew size; those elements which vary as a function
of the mission duration but not a function of crew size; and those elements
which vary as a function of the product of the mission duration and the crew
size. It should be noted that all elements of the EC/LSS do not have values
in all four of these categories. Those that do not are so indicated by a dash.
(Refer to Table 2 for a breakdown of the components included in each of these
categories.)

Open System for Durations Less Than 90 Days

This open system concept is similar to that used in the present Apollo
Command/Service Module. The daily requirements criteria for a crew
member in this system are given in the first Section of Table 1. All of the
crews daily needs and the waste products thereof are carried and stored
onboard the spacecraft. The weight scaling laws for this system are shown
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Table 2. Environmental Control and Life Support
Subsystem Components

Subsystem

Components

Subsystem

Components

1. Crew and
crew support

2. Furniture and
housekeeping

3. Food
management

4. Water supply

5. Waste
management

6. Temperature
and humidity
control

95-percentile man (> 197 pounds)
Shoes

Undergarments

Coveralls

Bedding

Personal property

Personal hygiene kit

Space suit

Space helmet

Space boots and gloves

Space back pack

Space suit 14-day O, supply
Fire fighting equipment
Medical equipment and supplies
Puncture sealant

Two airlocks

Sleeping compartment
Furniture

Clothes laundry

Janitorial equipment
Cleaning and janitor supplies

Kitchenette

Culinary equipment
Water heater and stove
Initial water supply
Food

Meal containers
Refrigeration
Repackaging supplies

Drinking water
Cooking water
Wash water
Containers

Toilet room

Feces collector - commode,
dehydrator, and supplies

Urine collector - adapter, pump,
holding tank, and water in system
Wash water collector - filter unit,
pump, filter supplies, holding
tanks, and water in system
Personal hygiene - filter unit,
suction pump, and supplies

Main condensing coil

Spare condensing coil
Heating coils

Spare heating coils

Fan

Controls

Ducting

Coolant in system

Coolant pump

Electronic heat conduction plates
Condensed water separator
Condensed water pump
Condensed water tank
Plumbing

7. Atmospheric
purification

8. Atmospheric
supply

Instruments
and controls

9.

Charcoal filters
Fiberglass filters
Diverter valves
Heater

Cooling coils
Ducting

Trap
Ultra-violet lamp
Silica-Gel
Zeolite

Blowers
Chromatograph
Catalytic burner

Oxygen

Oxygen tankage
Emergency oxygen supply
Emergency oxygen tankage
Pressure control

Valves and piping

Panel board
Instruments
Controls

Digitizing equipment

Note: If the oxygen is recovered by the Bosch

process,
numbers 7 and
subsystem:

Atmosphetic
purification and
supply

then the above subsystem functions of

8 are combined into the following

Charcoal filters
Fiberglass filters
Ducting
Diverter
Heater
Cooling coils

Trap

Ultra-violet lamp
Chromatograph
Silica-gel

Zeolite

Blower

Valving

Bosch process unit
Electrolysis unit
Oxygen pumps
Hydrogen pumps
Tankage

Catalytic burner

wralr

vaives
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Open < 90 Days

Or

Environmental Control/ Pounds/ | Pounds/ | Pounds/ Pounds/
Life Support System Elements |Pounds Man Day M-D Pounds | Man
Crew and crew support 65 360 —_— 0. 140 < |

(29) (164) —_ (0.064)
Furniture and housekeeping 295 65 — 0. 025 <
(134) (30) _ (0.011)
|
Food management 50 25 0. 05 1, 640 < i
(23) (11) (0. 02) | (0.745)
Water supply or recovery — — — 9. 450 — N
—_ —_ _— (4. 297) _ —_
Water management 72 14 0. 15 0. 100 <
(33) (6) (0.07) | (0.045)
Temperature and humidity 225 54 —_ — <4
control (102) (25) — S
Atmospheric purification 52 47 _ 0.053 | @¢@—— Same as C
(24) (21) — (0. 024)
Atmosphere supply 40 i6l o 2,240 44— Same as C
(18) (73) S (1, 018)
Instruments and Controls 100 — — — «4— Same as C
(45) — — —
Total pounds 899 726 0.20 13, 648 899 726
. (kilogram)| (408) (330) (0.09) | (6.204) (408) (330)

Note: Metric equivalents (kilograms, kilograms/man, kilograms/day, and kilograms

FOLDOUT FRAME



Table 3. Environmental Control and Life Support Subsystem Weights
ten > 90 Days Water and Oxygen Recovery Water Recovery Only
Pounds/ | Pounds/ Pounds/ | Pounds/ | Pounds/ Pounds/| Pounds/ | Pounds/
Day M-D Pounds|{ Man Day M-D Pounds | Man Day M-D
Same as Open < 90 Days —>
Same as Open < 90 Days >
Same as Open < 90 Days >
- 20, 700 80 80 — 0. 140 80 80 I (0.074)
—_ (9. 410){ (37) (37) — (0. 064), (37) | (37) — 0. 160
Same as Open < 90 Days —>
Same as Open < 90 Days >
ipen < 90 Days —pp 100 110 0.150 44— Same as Open < 90 Days —P»
: (45) (50) (0. 068)
!pen < 90 Days —3p <« Combined with ATM «4— Same as Open < 90 Days —P»
| ' Purification —>
rpen < 90 Days —§ 150  — —_ —_ 44— Same as Water and Oxygen
1 (68) — — — Recovery System —— ————»
0.20 24,898 | 1037 708 0.20 2.195 1029 | 806 0.20 4, 358
(0.09) | (11.317)| (471) (323) [(0.09) (0. 997) (468) |(367) (0.09) (1.981)
i/man day) are given in parentheses.
- ” 10 -
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Open < 90 Days
Environmental Control/ ) Feet3/| Feet3/| Feet3/ 3 ]
Life Support System Elements Feet3 | Man Day M-D Feet
Crew and crew support 2.0 5. 05 —_ 0.0089 4—
(0. 1) [(0.14) —_— (0. 00025)
Furniture and housekeeping 132.0 [110.0 N 0.015 4
(3.7 (3.08)] — (0.00042)
Food management 52.0 | 0.50 —_— 0.2000 44—
(1.5) | (0.02) (0.00567)
Water supply or recovery — S N 0. 1800 -
—_ _ S (0.00510) | —
Waste management 55.8| 1.00 ] 0,015 0.0100 <
(L. 6) | (0.03) {(0.001) |(0.00028)
Temperature and humidity 20,0 | 2.50 _ —_ —
control (0.6) [ (0.07)] — —
Atmospheric purification 2.6 S — 0.1330 <4— Sa
(0. 1) — —_ (0.00377)
Atmosphere supply 0.50 120,25 — 0.1500 <4— Sa
(0.014); (0.57) —_— (0. 00425)
Instruments and controls 2.5 —_— S —_ <4— Sa
(0. 1) —_ _ o
Total 267.4 139.30(0.015 0.6969 |267.4 |1
(7.6)] (3.93)[(0.001) [(0.0197) (7.6)

Note: Metric equivalents (meters3, meters3/man, meters3/day, and met

FOLDOUT FRAME
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Table 4. Environmental Control and Life Support Subsystem Volumes

Open > 90 Days Water and Oxygen Recovery Water Recovery Only
‘eet3/| Feet3/| Feet? 3 Feet3/| Feet3/| Feet3/ 3 Feet3/| Feet3/| Feet3/
Man Day M-D Feet Man Day M-D | Feet Man Day M-D
Same as Open < 90 Days —»
Same as Open < 90 Days >
Same as Open < 90 Days —>
— e 0. 4000 2,00]0.25 — — 2,00 [0.,25 - 0.008
— —  |(0.01133) | (0. 06)|(0.009) — _— (0. 06) [(0.009)] — |(0.0002)
Same as Open < 90 Days —»
Same as Open < 90 Days —p
ne as Open. < 90 Days » 4.00 0.5 0.010 44— Same as Open < 90 Days —P»

(0.11) (0.014) (0.0003)

ne as Open < 90 Days 9> ¢ Combined with Atmospheric <«— Same as Open < 90 Days —p»

purification >
ne as Open < 90 Days 9 3.50 . 4— Same as Water and Oxygen
(0. 10) Recovery System ——— o

9.3010.015 (0.9169 |271.3(119.80 [0.025 0.2339 [270.9 |139.55(0.015 | 0.5177
3.93){(0.001) |(0.02597) | (7.7)| (3.39){(0.0007)|(0.0066)| (7.7)| (3.95)[(0.001) [(0.01466)

:rs3/man day) are given in parentheses)

FOLDOUT FRAME
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Open < 90 Days
Environmental Control/Life Watts/| Watts/ | Watts/

Support System Elements Watts | Man Day M-D |W
Crew and crew support —
Furniture and housekeeping - —
Food management 200 10 R _ D
Water supply or recovery < Nor
Waste management 85 S N N -
Temperature and humidity control 25 40 —_ —_—
Atmospheric purification 125 55 —_ —
Atmospheric supply 300 —_ —_ —
Instrumentation and control 100 _ S N ~
Total 835 105 —_— — &

FOLDOUT FRAME
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Table 5,

Environmental Control and Life Support Subsystem

Power Requirements

Open > 90 Days

Water and Oxygen Recovery

Water Recovery Only

| Watts/ |Watts/ |Watts/ Watts/ | Watts/ | Watts/ Watts/ | Watts/ | Watts/

atts { Man Day M-D Watt.s Man Day M-D | Watts| Man Day M-D
None —»>
None | >

E Same as Open < 90 Days l —>

Ee —P 50 100 50 100 —_— _—

l Same as Open < 90 Days >

’% Same as Open < 90 Days —>

)

rQ-Same as Open < 90 DaysPp -
» © )

'Q—Same as Open < 90 Daysp»
i

:‘-Sa.me as Open < 90 Days-P»

300 250

—Combined with Atmos-
pheric purification —P»

<« Same as Open < 90 Days-9

<4-Same as Open < 90 Days P

200 — - S - €—-Same as Water and Oxygen
| Recovery System ———»
| :

135 105 —I —l 860| 400 ——‘ — 985| 205 — —
; l )

|

|

!

|

|

|

\

POLDOUT FRAME

-, 14 -
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in the first section of Table 3. As noted above, the open system is divided
into less than and greater than 90-day missions because of the need for
additional wash water and perspiration water for the longer missions. The
volume and power requirements for the open system, less than 90 days, are
shown in Tables 4 and 5 respectively.

Open System for Durations Greater than 90 Days

The open system, greater than 90 days, differs from the open system
less than 90 days, only in the weight of the water supply. This is also
reflected in the volume on Table 4. The power requirements for the two
open life support subsystems are identical.

Water and Oxygen Recovery

The difference between this system and the baseline system is in the
water supply and atmosphere purification and supply. In the case of the
water supply, the fixed weight and weight per man has increased to account
for the water processing equipment, and the weight as a function of the
product of mission duration and crew size has dropped drastically. It repre-
sents only the expendables required in the processing of water, such as
filters. In the case of the atmospheric purification and supply, these two

functions are combined into one equation. Note that the weight factor for
atmospheric purification and supply which is a function of the product of the
mission duration and crew size has dropped to only about 5 percent of the
former value. The weight of the instruments and controls has increased
approximately 50 percent to account for the additional controls for water and

oxygen recovery.

Water Recovery Only

This system is an intermediate ecological closure between the open
system and the water and oxygen recovery systems discussed above. There-
fore, the weights, volumes, and power requirements are essentially those
represented by these two systems for the appropriate type of closure. Note
from Table 1 however, that in this system more water is produced than is
required for water balance. Equations for weight and volume reflect the
provisions for storage of this excess water. This excess water can be used
for many purposes such as evaporative cooling, hence the weight for the

storage of this water is justified.
FOOD PRODUCING SYSTEMS
A study was made of food producing systems to determine if they were

attractive for the missions under consideration in this study. The primary

- 15 .
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evaluation criterion was weight in Earth orbit, but the potential reliability
was also considered qualitatively in the evaluation.

Figure 3 compares the weight* contributed by the three most significant
consumables of the life support system: water, oxygen, and food. It can be
seen that the potential weight saving for food is small compared to that for
water and oxygen. Figure 3 also shows the combined weight of water and
oxygen for the water and oxygen recovery system to illustrate the benefit of
recovering these items. The shaded area of Figure 3 represents the most
probable conditions for most missions (one to two years duration and 4 to
10 men). This again reduces the significance of the food weight compared
to the overall vehicle weight. In the boundary case (5, 000 man-days), the
stored food weight is about 8, 000 pounds, only part of which can be saved
at best.

The savings of stored food weight will be offset to some degree by the
hardware and electrical power required for regeneration. For short duration
missions, the food producing hardware exceeds the weight of stored food.
Several of the most promising systems were compared on a gross basis with
the stored food weight to determine at what point the production of food starts
to become attractive from a weight standpoint. The fixed weight plus the
required increase in the electrical power system weight is shown in Figure 4
for three typical systems for a crew size of 20 men. For realistic systems
studied to date, stored food is required to supplement the nutrients from
the produced food. It is not unreasonable to add 10 to 50 percent stored
food as a supplement. The amount is not known because the nutritional value
of produced food has not been established. Long term development tests are
required for this purpose. The Physico-Chemical System B with Glycerol
(Reference 2) is shown with 30 percent stored food as a typical example.

This produces a crossover at about one year. The Hydrogenomonas System
and the Duckweed System have different crossover points as noted. A
similar evaluation made for a three-man system produced the same cross-
over points.

The results summarized in Figure 4 are not intended to be exact but
are sufficiently accurate to indicate the trend. They are based on: (1) 1. 64
pounds/man-day for stored food, which includes an allowance for containers;
(2) 500 pounds/kilowatt for electrical power; (3) adjustments to account for
weights of water regeneration, etc., which should not be charged to the
production of food; (4) the assumption that the food producing systems can
be scaled linearly between crew sizes of three and twenty men using the
points designs of Reference 2 which are for a crew size of ten men. Although
these assumptions may not be strictly true, it is believed the results are
sufficiently accurate to conclude that food producing systems did not warrant

*Fixed weight and weight as function of crew size only were omitted for simplicity.

- 16 -
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inclusion in the weight synthesis and sensitivity evaluation. It is questionable

whether there is adequate incentive to develop these systems for the 1980 to
2000 time period.

CONCLUSIONS

Due to the short occupancy times (no more than 24 hours), the open
system was assumed for use in the ERM and the PEM ascent stage during
subsequent analyses. The open system was also used in the PEM descent
stages. Although there would be a mass advantage if a partially closed
system were used for the longer occupancy times, the magnitude of the
savings did not warrant the additional system complexity.

The mass requirements of the three systems considered in detail for
use in the mission module are shown in Figure 5 (as a function of mission
duration) for crew sizes of 8 and 20 men. As can be seen from the figure,
the mass requirements of the open system are excessive for the mission
durations applicable to the study—300 to 1500 days. Therefore, this system
was not considered further. The mass requirements of the system with
oxygen recovery only is approximately 50 percent heavier than the system
with both water and oxygen recovery for a mission duration of 300 days.

As the mission duration increases to 1500 days, the system with water
recovery only is approximately 80 percent heavier than the more fully
closed system. This mass penalty was considered to be excessive for these
missions. In order to utilize a system which is compatible with the require-
ments of all of the missions considered in this study, the water and oxygen
recovery system was utilized during the module and system synthesis
analyses discussed in Appendix D. The system will not necessitate major
technological advancements and could be readily available for all missions
during the time period being considered.

Because of the low weight of the communications subsystem relative
to the remainder of the total spacecraft, it is not necessary to select a
particular type of subsystem for the subsequent weight synthesis analyses.
However, in choosing a power subsystem (whose weight is not insignificant)
the power required by the communications subsystem must be known. There-
fore, a communications subsystem power requirement of 2, 000 watts has
been assumed.

- 19 -
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COMMUNICATIONS PARAMETRIC ANALYSIS

The economics of planetary exploration missions dictate that a maximum
amount of data be obtained and transmitted back to Earth., In particular,
some form of color television or color picture transmission would be
desirable. Due to the extremely high number of data bits in a high resolution
picture or TV frame, a high bit rate is required to accomplish transmission
in a reasonable time, even with low frame rates and compaction. This prob-
lem is aggravated by the extremely long communicating distances, which
range from 0.42 x 108 kilometers (0.28 A.U.) to 9.30 x 108 kilometers
(6.2 A.U.). Thus the communications subsystem is a critical element of
interplanetary spacecraft design. It will represent compromises and/or
penalties in the areas of power requirements, antenna sizes, pointing and
tracking requirements, transmission duty cycle, data rate, etc. Much work
must be done to develop communication technology and spacecraft hardware,
and perhaps even the replacement of the existing ground communications
network, to be compatible with the new spacecraft equipment.

The scope of this study was limited to the spacecraft-to-ground
communication link., The other communication links, which include the ground
to spacecraft (up-link), spacecraft to/from planetary excursion module (PEM)
and exploration crew to/from PEM or orbiting spacecraft, have unique prob-
lems which have not yet been completely resolved, but they are not considered
critical for the purposes of this study.

STUDY APPROACH

The study results insofar as is practical are presented parametrically.
This is because of the sensitivity of the system to various requirements that
have not been fully established. Examples, which represent typical require-
ments, are presented to illustrate the use of the parametric data, but these
should not be considered as final or recommended design points. For
example, one might select a certain data rate, duty cycle, beam width or
tracking capability, etc., and find that the requirements for power, size,
weight, etc., were very moderate, while on the other hand another set of
input requirements would change the power, weight, and size by several
orders of magnitude.

- 21 -
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The critical parameter in the communications study was assumed to be
input power because the weight of the various communication elements are
not as sensitive to changes in the input requirements as is the weight penalty
for the changes in the power requirement. For example, the transmitter and
receiver elements probably will not exceed 500 pounds, and even the largest
practical antenna (=15. 2 meters) would not weigh more than 500 pounds,
while the weight penalty for input power may well exceed 5, 000 pounds.
Therefore, input power was used as a measure of the communication sub-
system, i.e., all other things being equal, the system requiring the least

input power for a given bit rate range squared product (BRZ) is considered
the best system.

There are a large number of parameters which effect the capability of
any specific communication subsystem. In order to simplify this study and
still obtain meaningful results, certain assumptions were made regarding the
performance parameters of the ground receiving station, modulation effi-
ciency, performance margin, type of modulation, efficiencies, etc., expected
in the 1980 to 2000 time period. The values selected for these parameters
and the rationale are discussed below. The significant factors for comparing
different types of communication systems are transmitted power of the
spacecraft terminal, spacecraft antenna gain, and efficiency.

Various constraints or limitations, either theoretical or projected
state-of-the-art, tend to make one system better than another. For example,
some systems are power limited while others are bandwidth limited. The
parameter BR2 was used for comparing candidate communication subsystems
because bit rate can be traded off equally with the square of the communi-
cating range. Additional factors are included in the parametric data for
developing the characteristics of the communication subsystem for any
particular set of input requirements. These include such items as the
number of bits of information to be transmitted, such as in a photograph or
TV frame, the rate at which this information must be transmitted, various
beamwidths which must be selected to be compatible with tracking and
pointing capability, and the transmission duty cycle.

Four different types of communication subsystems were selected for
comparison: S-band, millimeter, carbon dioxide (CO)) gaseous laser, and
galium arsenide (GaAs) injection laser. These were selected to represent
the complete spectrum of available systems. Although only four subsystems
were investigated in depth, these systems represent the inherent advantages
and problems of many other systems and are considered to be those most
likely to be considered for future applications. The characteristics used for
each of these systems were those that could be postulated for 1980 to 2000
time period, assuming active development and funding during the interim
time period.

- 22 -
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Earth atmospheric transmissability, transmission dispersion, and
spreading losses were considered but other planetary atmospheric losses
were omitted in considering the spacecraft-to-Earth link by assuming that )
the spacecraft operates outside the influence of the planet atmosphere or
radiation belts. Occultation, solar corona effects, and trapped radiation
belts were not included in the values computed for each system.

It was found convenient, for the purposes of applying the parametric
data to the missions of the study, to consider threce mission groups. Mercury,
Venus, and Mars were considered in one g=oup; the asteroids Ceres and
Vesta in a second group; and Jupiter/Ganymede as a third group. The mis-
sion groupings were selected on the basis of communicating distances.

BASIC COMMUNICATIONS SUBSYSTEM REQUIREMENTS

The requirements for a deep space communication subsystem in support
of manned planetary missions are very severe because of the primary con-
siderations of distance, length of mission, and planetary/interplanetary
environment. The communication subsystem must also satisfy many other
requirements.

Down-data transmissions should be maximized because scientific justi-
fications of the mission may require that high-resolution pictures be trans-
mitted in reasonable time. For digital modulation techniques, 106 to 107 bits
per frame are normally required. Bandwidth requirements will vary with
frame-rate, compaction, and modulation techniques. Down-data link tele-
vision or picture transmission may alsc have medical uses for monitoring
the astronaut's health.

Interplanetary missions defined by this study result in propagation
distances for a direct link from a planetary orbiting spacecraft to Earth
ranging from 0.28 A.U. (0.42 x 108 kilometers) to 6.2 A.U. (9.3 x 108 kilo-
meters). The inverse square law as it relates to received energy places
high demands on whatever system is to be used.

Mission times for interplanetary travel will range up to several years
in duration; therefore, the communications subsystem must be extremely
reliable. Assuming the need for a 0. 99 probability of crew safety and using
the Apollo apportionment criteria (one percent of allowable numbers of
mission failures), the required communications reliability is 0. 9999.

Crew considerations require that communication coverage be continuous
although lower bandwidth capabilities, and some sacrifice in overall relia-
bility, may be required during periods when occultation by the sun or the
planet occurs.

- 23 -
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Monitoring of spacecraft progress and the requirement to correctly
point highly directive Earth-based and spacecraft-based antenna (or lens)
systems make it necessary that the communications subsystem have an

automatic tracking system which can acquire and lock-on narrow beam
transmissions.

CANDIDATE SUBSYSTEMS

Four subsystems, which span the frequency range of 2.3 gigahertz
through 357, 000 gigahertz (S-band to near infrared light) are compared in
this study as follows:

System Frequency Range
S-band 2.3 GHz - 13.05 cm
Millimeter waves 94 GHz - 3.19 mm

Carbon dioxide laser (coherent
detection) 28,300 GHz - 10. 6 micron

Galuim arsenide laser (non-
coherent detection) 357, 000 GHz - 0.84 micron

S-Band Systems

S-band was selected as the baseline system for the purposes of com-
parison during the communications subsystem analyses because of the state
of development and large investment in the Earth terminal network. All
current planetary spacecraft use this network but continued development is
still required of both the Earth based systems and the spacecraft systems.
Larger spacecraft antennae may be required with diameters up to 15.2 meters
(50 ft). The development of the deployment and steering mechanisms for
these antennae would also be required. ILarge, high gain, phased arrays
may be more desirable and also require further development.

Millimeter

The 3.19-millimeter wavelength (94 GHz) system was selected for
analysis since millimeter frequencies are the next logical development of
the radio-frequency type communication systems, and large investments
are being made annually in this area for a wide variety of applications. The
millimeter-wave systems have an advantage over S-band for spacecraft
applications because high gain antennas and components can be much smaller,
and the higher frequency inherent with millimeter systems permits higher
data rates, provided transmitted power level is commensurate with the
required range.
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Optical Systems

The field of optical communications is such a fast moving area that a
single clear cut program is difficult to define and many areas of further
work are required. The areas requiring further work are shown in Table 6
which summarizes the accomplishments necessary to bring the various types
of laser sources and their detectors to practical usage for space applications.
Solid lasers (e.g., tuby) are not covered in this table because they are
inherently best adapted to high peak powers at low repetition rates. Ideally,
a laser and its detector should have the following characteristics:

High efficiency

High cw power output

Capable of internal modulation at high frequencies
Compact, rugged package

Stable area, narrow line (single mode), lasing

No cooling requirements

Highly sensitive detectors

High frequency response in the detector

As indicated by Table 6, much work must be done in the area of basic
components. The present ""workhorse', the CO, laser, must be rugged and
compact, capable of internal modulation, and easily cooled in the space
environment. The corresponding detector presently lacks high sensitivity
and frequency response.

Internal modulation of gas lasers is very limited, whereas the semicon-
ductor laser can be easily modulated internally. To achieve high performance
under background noise limited conditions, a heterodyne receiving system
must be developed. In support hereof, wide band FM internal modulation of
c.w. coherent injection (semiconductor) and gas lasers is required of the
order of 4 GHz. Correspondingly, demodulator mixers capable of mixing the
local oscillator laser with the incoming signal and demodulating information
bandwidths up to 100 GHz are required. This area is very difficult but highly
important. Local oscillators must compensate for doppler shift and maintain
spatial and temporal coherence with the incoming signal.
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Further work in the optics area is required to achieve the following:

Spacecraft optics systems up to 1 meter aperture diameter whose per-
formance achieves diffraction limited beamwidth.

Common transmit-receives optics with provisions for lead angle gen-
eration, wide-beam acquisition, and provision for automatic tracking.

Non-degradation of performance due to launch and interplanetary
environment.

Narrow-band filters (doppler-shift limited).
Adaptive (self correcting) control systems.

Carbon dioxide (CO2) was selected as the most promising continuous-
wave (c.w.) laser being developed at the present time. Liquid lasers may
eventually be developed and supersede the gaseous lasers due to inherent
higher power capability (better cooling) but they cannot be considered as a
competitive system for the operational time period for this study (1980 to
2000). Heterodyne detection was assumed which permits a theoretical 40- to
60-decibel increase in the signal-to-noise ratio over background limited
detection.

Galium arsenide (GaAs) was selected as being typical of semiconductor
injection lasers. Although maximum transmitted power capability is very
low, total performance is competitive with other communication subsystems
because efficiencies are high and the wavelength is compatible with photo-
multiplier (photoemissive) detectors with high sensitivity. Since they trans-
mit in the near infrared spectrum, the advantages and problems common to
other systems with similar frequencies are represented. Non-coherent
detection was assumed because atmospheric distortion of the wave front
limits receiver diameter.

Helium neon lasers were considered initially but not used in the
comparison because they have very low efficiency (about 0.1 percent) and
are limited to about 0.1 watt output.

GROUND RULES AND ASSUMPTIONS

In order to simplify the study, as many parameters as possible were
established and held constant. The values for these parameters are shown -
in Table 7. They represent the postulated post-1980 technology. The
bases for these values are discussed in the following paragraphs.
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Table 7. Fixed Parameters for Comparison Optical and Radio
 Space Communication

Parameter S-Band Millimeter CO, (heterodyne) GaAs (non-coherent)

Frequency 2.3 GHz 94 GHz 28, 300 GHz 357,000 GHz
Wavelength 13,05 cm 3,19 mm 10, 6 microns 0. 8400 microns
Spacecraft antenna diameter (m) 4. 88 15,2 0. 304 0.67 4,58 10,014 0,178 1 0. 10 lm
Spacecraft antenna gain (db) ([A]) 38.8 48.7 47 53.8 70 73.22 94.8 109, 6 111.5 131.5
Beam angle (arc-sec) ([B]) 6750 2150 2640 1200 165 180 15 2,67 2.12 0.21
Ground antenna diameter, DR {m) 64 (210 ft) 4.58 (15 ft) 2 10
Ground antenna gain (db) . 61 70 Na ([F]) va ([F])
Ground antenna area (effective) Ag («dbmz) 32.5 9. 56 4, 96 18.9
Modulation efficiency, £- (db)([C]) 10 10 10 10
Performance margin, M {db) ([D]) 10 10 20 20
Receiver system noise temperature (°K) 35 400 NA NA
Noise spectral density

v= KT (radio spectrum) 4.83 x 10722 5.52 x 1072} NA NA

v= KT{db) -213 -203 NA NA

w= hf (optical spectrum) NA NA 1,88 x 10720

»= hf (db) NA NA 1197.3 dbw-cps ™
Detector responsivity, # NA NA 0.002 ame-wzutt_l
Quantum efficiency, v NA NA 0,20
Modulation PCM/PSK/PM PCM/PSK/PM PCM/PL PCM/PL

. BRZ(QM 4y BRZ M 4r¢ RZB hi(l16) M (¢ BRZ 32M (¢) e
Range cquation ([E]) PT GT = A PT GT = ry PT GT = > PT GT = >
R R D s
Efficiency (percent) 50 40 40 50
S WFootTtesit; T;l:;f I;ixed Parameters T o ) -
I . e - - - -

([A]) Gain of optics assumes uniform density within limits of beam ({F) Not applicable because ground aperture used as
([B]) Diffraction limit assumed for optical beams collector of photons only.

. A
0: 1.22 4

Beam angle for radio frequency based on 3-decibel points

A
6= %99& arc-seconds

([C]) Modulation efficiency for digital systems:
(&) = ST | 10 decibels for all systems

where:

£ = modulation efficiency in cycles per sec per bit per second
S = signal power in watts
T = time in seconds per bit
N = Noise power in watts
B = bit rate in bits per second
Example of bit error rate (BER):
For 10 cps/bit sec.
S-band BER 5 x 10°0
Optical BER 4x 1073

([D]) Performance margin
For S-band and 3 mm, includes transmission line and atmospheric losses

For Optics, includes following transmissivities:

GaAs CO
Transmitter optics TT =0.50 -3 db Tt = 0.50 -3 db
Atmospheric Ta = 0.80 -1db Ta = 0,36 -4.5 db
Filter T, =0.20 -7 db T, =0.90 -0,5db
Diffraction (farfield) Td = 0,50 -3 db Td = 0.50 -3 db
Receiving optics Tr =0.50 -3 db T_=0.50 -3 db
Modulation Tm =0, 50 NA T =0.50 -3 db
Subtotal -17 db -17 db
Tolerance -3 dv -3 db
Total -20 db -20 db
([E]) The terms in the range equations are as follows:
B = bits per second Dg = diameter of optical aperture
R - range (meters) e = electronic charge
¢ = modulation efficiency N = quantum efficiency
M = performance margin P = detector responsivity
o - noise spectral density
AR = antenna area (effective)
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The radio and optical frequencies shown in Table 7 coincide with known
atmospheric ''windows' and cover the spectrum from microwaves through
millimeter waves to near infrared. The ground station portion of the link
was assumed to be near optimum without the constraints of cost or size,
although recognized technical limits were taken into account.

Spacecraft antenna diameters were chosen to cover a full range of
physical sizes and beam angles. They are tabulated in Table 8 for ready
comparison. The pointing accuracy must be no less than one-half the beam
angle and in some cases (depending on modulation and detection methods
used) must be much less. Spacecraft antenna gains corresponding to the
various antenna or aperture diameters are also tabulated in Table 7 and
range from 38. 3 decibel for the 16-foot (4. 88-meter) S-band antenna to
131. 5 decibels for the 1-meter GaAs aperture.

The ground antenna for S-band was taken equivalent to the present
64 _-meter (210-feet) diameter Goldstone antenna, as this equipment is con-
sidered to be near optimum economically for the period of interest.

The ground antenna for the millimeter waves was assumed to net
70 decibels with a diameter of 4.58 meters (15 feet). This is considered
to be a maximum realizable gain for a parabolic antenna.

The ground optics for the galium arsenide non-coherent laser system
is assumed to be a large segmented reflector with an effective diameter of
10 meters. This system will be essentially a photon collector and can be
constructed of many individual reflectors.

The CO heterodyne system is based on an f. 3 telescope with an
effective diameter of 2 meters.

A modulation efficiency of 10 decibels is assumed for all systems,
which is equivalent to a ratio of bandwidth to bit rate of 10, The performance
margin for the radio frequency systems is taken as 10 decibels and for the
optical systems as 20 decibels, due to the losses in the optics. (See
Table 6, footnotes). The performance margin makes allowance for
various losses in the transmission lines, optics, and atmosphere, and the
losses due to pointing error, polarization, and modulation.

The S-band receiving system noise temperature of 35 K is based on a
30 K sky temperature and a 5 K receiving system temperature. For milli-
meter waves, the system noise temperature is assumed to be 215 K sky noise,
85 K line noise, and 100 K receiver noise for an overall system temperature
of 400 K. Relay satellites could be used to receive in the millimeter spec-
trum and relay in the S-band to reduce the effective millimeter background
noise, but data rates would be essentially those of S-band.
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Table 8. Spacecraft Antenna Diameters and Beam Angles

Spacecraft Antenna
Diameter

System Meters Feet Beam Angle* (arc-seconds)
GaAs 1 3.28 0.21
GaAs 0.1 2-3/4 inches 2,12
CO2 1 3.28 : 2,67
COZ 0.178 4.8 15
CO2 0.014 0. 38 inches 180
94 GHz 4,58 15 165
94 GHz 0. 67 2.2 1200
S-band 15,2 50 2150
94 GHz 0, 304 1 2640
S-band 4,88 16 6750

*Between 3-decibel points for radio frequency
Diffraction limit for optical apertures

The detector responsivity for the galium arsenide system is based on
the S-1 Photocathode detecting surface. The quantum efficiency for the CO;
laser system is based on current work being conducted at the Hughes Santa
Barbara Research Center.

Digital modulation is assumed for all systems, due to the inherent
advantages of being able to handle mani{ data channels on a time shared basis
and the direct data reduction by computer. The range equations are formu-
lated on the basis that both the bit rate and the range are variables which
are fixed by the mission requirements and thereby establish the required
spacecraft power and gain product (PG ).

The comparison of the systems which follows is very sensitive to the
values for the fixed parameters shown in Table 7 and must be interpreted
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within the framework of the above ground rules and assumptions. For
example, the maximum antenna sizes and/or gains affect the power require-
ment significantly and could slant the comparison to one system or another.
Another example is the tracking/pointing capabilities. If developments in
these areas make the use of narrower beams possible, the higher frequency
systems would become more attractive.

SUBSYSTEM COMPARISON

The candidate communication subsystems are compared in Figure 6
by plotting transmitting capability (BR2) versus transmitter output power
with antenna size as a parameter. It is believed that, for the purpose of
this study, the differences in the candidate communication subsystems in
the areas of performance, integration, and weight of transmitter, receiver,
and antenna (apertfure) are so small as to be insignificant compared to the
input power weight penalty. For example, in the area of performance, both
modulation efficiency and performance margin are specified so that error
rate and signal-to-noise ratio are equal for the candidate subsystems. The
only integration factors which might be significant are in the areas of antenna
size and tracking/pointing requirements. In the first case, it is assumed
that the largest antenna required, 15.2 meters for S-band, can be accom-
modated. Thus the rating factor is qualitative. In the case of pointing/
tracking, beam-angle effects reflect into the input power requirements and
are shown parametrically.

The galium arsenide non-coherent laser requires least power for a
given bit rate range squared product (BR2) and would normally be rated as
best. However, this rating is based on a beam width of 0.21 arc-seconds
(Table 8) which is believed to be a tracking/pointing accuracy requirement
that cannot be met within the time period under consideration.* Widening
the beam to 2.12 arc-seconds by using a 0.1 meter aperture increases the
power requirement by about 100 times so that it becomes worse than S-band
with a small antenna.

The next best system is the CO) laser with a 1. 0 meter aperture. This
system has only a 2. 67 arc-second beam, which also presents a serious
pointing/tracking problem.

The S-band looks very attractive if an antenna of 15. 2 meters (50 feet)
can be provided. Tracking/pointing is not expected to be a problem with
S-band. Although the S-band system with a 4. 88-meter (16-foot) antenna

‘Laboratory devices have demonstrated 1/50 arc-second tracking/pointing capability based on boresighting.
However, boresighting cannot be used to advantage at planetary distances because Earth lead angles must be
computed from navigational data. The GaAs laser beam represents a spot size an order of magnitude smaller
than the Earth diameter from Jupiter (about 550 miles) and it is considered unreasonable to expect calculated
pointing capability of one half the beam width (about 275 miles) from those distances.
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requires an order of magnitude more power, it is still next best to the 15.2 M
S-band system and will handle most of the data rate requirements at ranges
up to 6.0 A, U. (Jupiter)

The values for BR2 for color TV from Mars to Jupiter varies from
about 1021 to 1023, Typical low values are of the order of 1019 to 1020 for
telemetry and voice at these ranges. Thus, the transmitter output require-
ments vary from 0. 01 watts with GaAs to over | megawatt for the millimeter
system with a 0. 3-meter antenna. It can be seen that the:power penalty is
very sensitive to the range, data rate requirements, and system selected.

Although, the power penalty varies with the square of the range, the
difference between the inner planets and the outer planets is only 15 decibels,
The variation in the antenna gains between S-band with a -, 88-meter antenna
and the GaAs with a l-meter aperture is over 90 decibels. Thus, it can be
seen that the antenna gain overshadows the range problem by a large factor.

The 15-decibel variation in the range can be achieved by simply
enlarging the antenna size. For the S-band, two thirds of this can be
achieved by changing from a 4. 88-meter antenna to a 15.2-meter antenna.
For GaAs, 20 decibel gain can be achieved by changing the aperture from
10 centimeter to 1 meter.

It can also be seen that the power-weight penalty is directly proportional
to the data rate. Reducing the amount of data to be transmitted by a factor of
ten by compaction reduces the power penalty by the same factor. (Compac-
tion ratios of 4:1 to 6:1 are within the current state-of-the-art.) This also
illustrates how important data management is in reducing spacecraft weight.
Care should obviously be used in selecting the type and quantity of data to
be transmitted. For example, if transmitting compacted TV from Jupiter
at one frame per five seconds requires 400 watts, increasing this rate to
the standard 30 frames per second for commercial TV would increase the
required power to 60, 000 watts. ‘ .

The parametric data of Figure 6 represent specific antenna sizes so as
to permit a ready comparison of the candidate systems. Figure 7 is more
universal and can be used when other antenna gains are desired. Thus,
knowing or specifying any three of the four parameters, P1, G, B, and R,
allows the fourth parameter to be determined readily. For example, if we
select S-band and specify the power as 100 watts, antenna gain as 50 decibels,
and range as 108 kilometers (RZ = 1016), it can be seen that 107 (representing
102 watts x 105 gain) intersects the S-band line at approximately 3 x 1022 or
a bit rate of 3 x 106 bits/second. (3 x 1022 1016 )

Care should be exercised when using Figure 7 for specific systems.
Maximum transmitted power capability for the post-1980 time period
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is expected to be 1 kilowatt for S-band and millimeter systems, 40 kilowatts
for CO2 lasers, and 10 watts for GaAs lasers.* Also, each frequency has a
theoretical maximum data-rate capability. In general, it may be assumed
that the data rate is approximately one percent of the carrier frequency or
2.3 x 107 for S-band, 9.4 x 108 for millimeter, 2.8 x 1011 for CO,, and
3.6 x 1012 for GaAs. From this it can be seen that the GaAs has 105 the
data rate capability, but it should be noted that S-band can accommodate the
projected requirements (up to BR2 = 1023 bits-km/sec).

Figure 8 presents typical data requirements for color TV—both present
commercial type and a postulated compacted type (compaction ratio 10:1)—
and for voice—again both current and postulated types. This chart can be
used to determine bit rate (B) by selecting the time to transmit the data.

For example, compacted color TV transmitted at the rate of one frame each
five seconds produces a bit rate of 4. 5 x 104 bits/second.

Figures 9 through 12 show the bit rate as a function of transmitted
power and input power for various antennae and ranges for S-band, millimeter,
CO2 and GaAs lasers, respectively. The same limitations on power and data
rate presented for Figure 7 must be observed for these figures. Efficiencies
for the various systems have been estimated for 1980 time period and entered
in Table 6. The same efficiencies form the basis of the power input scales of
Figures 9 through 12. Required transmitted power and the corresponding
input power for specified bit rate, range, spacecraft system, and antennae
diameter, can be determined by the use of these figures. The parametric
lines are a function of the range in astronomical unit and antenna diameter.
The distances represent approximate nominal communications ranges for
Mercury, Venus, and Mars - about 1 AU; Ceres and Vesta - about 3.5 AU:
and Jupiter/Ganymede - about 6 AU. It can be seen from Figures 9 through
12 that, for the systems which would probably be selected for reasonable
data rates, the power requirements are of the order of 100 to 1000 watts. It
probably would not be worthwhile to develop an exotic system to reduce the
power below these values, and higher bit rates won't be specified (or required
if compaction techniques are developed) because of the rapid increase of
power penalty. Perhaps, however, the peak demand may be as much as two
orders of magnitude higher for short periods. For example, it might be
feasible to operate a CO) laser at 8 kilowatts output, which would represent
a peak input demand of 20 kilowatts. If the transmitter were used for only
four hours per day the average power would be only 3.3 kilowatts, as seen
from Figure 13.

*These maximum transmitter power ratings are estimated on the basis of the status of laboratory or developmental
models of each of these devices being operated today projected to the 1980 period. For example, experimental
100-watt traveling-wave tubes have been demonstrated in the laboratory, and 1000 watts seems to be reasonable
by 1980. The power limit shown for the gaseous laser is based on physical size limitations. The GaAs lasers
are based on the use of an array and a reasonable projection of output power per unit.
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TYPICAL APPLICATIONS

Typical missions to Mars, Ceres, and Jupiter are analyzed to illustrate
the use of the parametric data. Tables 9 through 11 show the significant
parameters for each of the four candidate systems for these three missions.
In all cases, compacted color TV was assumed to be transmitted at one
frame each five seconds and that transmission occurs at the rate of four
hours per day. Figure 8 indicates the bit rate would be 4.6 x 104 bits/second.
This bit rate, when multiplied by the range squared, produces a BR2 value
for Mars of 1.03 x 1021, The transmitted power for the various systems can
be obtained from Figure 6. In the case of S-band it was assumed that a
15. 2-meter (50-foot) unfurlable spacecraft antenna is used. This produces
a transmitted power requirement of 5.3 watts. For the millimeter system,

a 4. 58-meter spacecraft antenna is used which approaches the upper limit of
70 decibels gain for a parabolic antenna. The comparable power for this
system is 75 watts. The optical systems were analyzed on the basis of
diffraction limited optics. The largest practical size is considered to be a
l-meter aperture. This size aperture is assumed for both the CO; laser
and the GaAs laser. This results in 4 watts for the CO;, laser and 1.8 watts
for the GaAs laser.

The input power requirements for the four systems being analyzed have
been determined and the data are entered in Table 9. Using the peak input
power values so calculated and the arbitrary duty cycle of 4 hours, the
average power on a 24-hour basis can be determined using Figure 13. The
average power for S-band, millimeter, CO,, and GaAs for the Mars case
is 1.8, 31.3, 1.66, and 0. 6, respectively.

Missions to Ceres and Jupiter (Tables 10 and 11) require higher
power. The highest peak input power is 7, 000 watts for Jupiter, using the
millimeter system. This is only slightly more than 1 kw at the 4 hour/day
duty cycle. It was assumed that the tracking problem could be solved for
all these systems for purposes of illustration.

SUBSYSTEM ANALYSIS

As S-band is not significantly affected by weather and because pointing
and tracking is considerably less restrictive, it appears that S-band will hold
a significant position in post-1980 communications. The assumed unfurlable,
15.2-meter (48. 7-decibel gain) parabolic antenna is considered to be about
as large as is practical to deploy and retract, and thus better antenna effi-
ciency is desirable. The only significant drawback of S-band is the limited
bandwidth. If compaction ratios of 10:1 or more are not achieved, the
higher frequency systems may be selected over S-band.
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Millimeter waves require power an order of magnitude higher than
required for S-band, but the antennas and other equipment required are much
smaller. For spacecraft applications where the craft is spun to produce
artificial gravity, a small retractable antenna or an array former on the
surface of the vehicle is attractive. The millimeter systems would be more
competitive if antenna arrays could be developed that would greatly exceed
the 70-db figure assumed for both the spacecraft and ground terminals.
Also, system noise temperature may be decreased, although only a 3-db
gain can be achieved in this area as the sky temperature contributes
215 degrees of the 400 K system noise temperature assumed. The milli-
meter system is an attractive successor to S-band because the equipment
can be co-located at the S-band stations and much of the existing electronics
and physical facilities can be shared or used to reduce costs.

Due to high antenna gains possible with lasers, wide band, high data-
rate communications can be achieved with significantly smaller power
requirements. The transition from today's components and devices to
space-qualified hardware, however, will require significant breakthroughs
in many areas and a heavy expenditure in research and development dollars.
Also, the present investment of the ground-based network will have to be
increased with optical receiving stations located in areas having a low
probability of rain, snow, cloud cover, or fog (e.g., certain mountain peaks).
An alternative to special ground stations for laser systems is the use of
satellite relays where lower frequency is used to penetrate cloud cover.
Tracking would still be a serious problem. In fact, it would probably be
more difficult to acquire and track satellites than to acquire and track Earth
based stations. The special stable platform and optical telescope required
for lasers and the difficulty of computing lead angles tend to offset the
advantages offered by laser systems.

Ultimately, any system becomes limited by power and data rate.
Optical systems are inherently capable of transmitting wide bandwidths due
to the high frequency of the light source. They can also transmit high data
rates for less power, provided tracking/pointing problems are solved.
Therefore, optical systems must ultimately be developed if high resolution,
live motion, real time color television becomes a requirement. The state-
of-the-art is such today that only the feasibility of using optics for such
purposes can be visualized. There is much research and development to
be done in basic components, system techniques, and supporting hardware
before a highly reliable, workable system can replace the present micro-
wave spacecraft and ground terminals.

CONCLUSIONS

A parallel research and development approach appears desirable for
the continued development of communication subsystems. S-band should be
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developed to its full capability, since it probably will fulfill many inter-
planetary requirements for the next 20 to 30 years. On the other hand,
smaller, lighter, and higher data-rate systems will be required eventually
and research must be continually applied. A gradual transition from S-band
to either millimeter or optical systems should be developed to take advantage

of their favorable system characteristics.
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FRECEDING PAGE BLANK NOT FILMED.

PROPULSION SUBSYSTEM PARAMETRIC ANALYSIS

Propulsion subsystem scaling equations were developed which define
the engine and pressurization system weights as a function of the engine
characteristics. The basic scaling equations defining engine weights were
provided by the NASA/MAD and were modified to reflect the effects of engine
type. The characteristics of candidate chemical propellant combinations
were established and representative propellants selected on the basis of
performance and storability considerations.

PROPULSION SUBSYSTEM SCALING EQUATIONS

Investigations were undertaken to verify the form of the NASA/MAD
furnished rocket engine weight scaling equation and to determine appropriate
coefficients for use with these equations for various engine types. Both
chemical and nuclear engines were considered.

Chemical Engine Weights

The equation provided has the following form:

(T
WC—<—T—+Z>n

where
W = weight of chemical engine cluster, kg
T = thrust of each engine, kg
= engine thrust-to-weight ratio
Z = constant (nominal value = 45)
n = number of engines in cluster

To develop propulsion and engine thrust-to-weight trend predictions,
liquid propellant rocket engines have been investigated, accounting for past
developments, scheduled future developments, and projected rocket engine
capabilities during the next quarter century. Figure 14 presents engine
thrust-to-weight ratio trends. It will be noted that there is, and will continue
to be, a distinct difference in engine weight between engines employing
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cryogenic propellants and those using the storable propellants. This dif-
ference is due primarily to the relatively high density exhibited by the
storable propellant combinations and the resulting reduction in turbomachin-
ery and thrust chamber weight. The predicted thrust-to-weight ratio trends
are based on the assumption that progress in future years will be at the
same rate as has been evidenced during the past 15 years.

Engine thrust-to-weight ratios as a function of engine thrust level were
examined for various types of liquid propellant engine designs. These data
were correlated with the NASA/MAD chemical engine weight scaling equation
and an appropriate coefficient for use with these engine types derived. The
engine thrust-to-weight ratios are based on current engine designs projected
to higher thrust levels.

Figure 15 indicates the thrust-to-weight relationship exhibited by the
conventional nominal chamber pressure (500 - 1000) psia pump-fed engine
designs. The projected trend curves shown on Figure 15 were established
and scaling equation coefficients estimated for these engines. The value of
the coefficient (K) is shown in Figure 16 as a function of vacuum thrust.
Similar data regarding pressure fed storable liquid propellant engines of
conventional design are shown in Figures 17 and 18.

Investigations of the engine thrust-to-weight relationship as a function
of thrust magnitude have also been conducted for the more advanced engine
design concepts. These include the current high chamber pressure (2000 -
3000 psia) engine development and the proposed aerospike nozzle configuration
engines. Figure 19 shows the trend indicated for high chamber pressure
engine concepts. The data points shown on the figure for the storable propel-
lant engines are based on the Aerojet-General Ares studies. The data points
for the LO2/LH2 propellants are based on Pratt & Whitney design data.
Figure 20 provides the estimated coefficient for these engine types for use
in the chemical engine weight scaling equation. In Figures 21 and 22, engine
thrust-to-weight data estimates and the appropriate scaling equation coef-
ficients are provided for the aerospike engine design concepts.

These data indicate that the NASA/MAD chemical engine weight-scaling
equation that was furnished is in good general agreement with rocket engine
design data; and that by the employment of an appropriate numerical coef-
ficient, the equation will provide realistic weight estimates for a large
variety of liquid propellant engine designs and thrust levels.

Nuclear Engine Weights

The solid core nuclear engine weight equation was given by the NASA/
MAD in the following form:

Wy = (¢T +B8)n
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where

W._. = weight of nuclear engine cluster including radiation shield, Kg

T = thrust of each engine, Kg

n = number of engines in cluster
o = constant (nominal value = 0, 129)
f = constant (nominal value = 3310)

This equation was compared against predicted nuclear engine weight
estimates as a function of thrust magnitude. Comparative data were derived
from several sources, and it was determined that the proposed equation
agrees reasonably well with the most recent estimates of nuclear engine
weights.

PROPULSION SUBSYSTEM ANALYSIS

Potential chemical propellants were examined and several combina-
tions selected as being representative of the chemical systems applicable to
the missions considered during this study. Tank pressure and propellant
temperature ranges were established for several propellant constituents.
To generate representative chemical and nuclear propulsion subsystems
weight data, parametric tank pressurization systems were generated.

Candidate Propellant Combinations

The propellants considered prior to the selection of propellant com-
binations representative of the chemical systems are presented in Table 12.
This table lists various propellants and their appropriate performance levels,
physical characteristics, and thermal properties. Also shown in the table is
a criterion which has been developed which is an approximate measure of the
in-space storage capability of the various candidate propellant combinations.
It is, in effect, the ability of the propellant to absorb heat through bulk
temperature increases and evaporative cooling (through venting), divided by
the potential heat absorption rate. The heat absorption rate is proportional
to the bulk liquid temperature less the environmental temperature. Those
combinations which exhibit the higher values have the greater degree of
storability.

A criterion for determining the relative cooling capability of these
propellant combinations in regenerative rocket engines is also presented in
Table 12. This is of particular importance to large propulsive stages, where
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1
Vacuum
Vacuum Density 5‘
Opt. Bulk Specific Impulse Chamber :
Mixture | Density |Impulse 1000 lb-sec Temp Fre
Propellants Ratio | (1b/£t3) (sec) ft3 (°F) P
i
F2/N2H4 2,27 81.7 430 35.1 7140 ‘;
N2F4/N2H4 3.24 89.2 390 34.8 6950 ‘
OF,/MMH 2. 42 78. 3 416 32.6 6620
N2F4/MMH 3. 38 85.5 380 32,5 6600 1:
87.5% FLOX/MMH 2.75 77.0 421 32.4 7080
CIFS/MHF‘—3l 2. 60 90. 4 358 32.4 6350
N2F4/NH3 4. 50 78.3 381 29.8 6660
82% FLOX/CH4 5.75 66. 1 424 28.0 7090 -
OFZ/BZH() 3.75 62. 4 444 27.7 6990 -
OZ/CH4 3. 32 51.2 379 19. 4 5370 -
F,/H, 11.0 35. 0 479 16.8 6660 -}‘
\
O,/H, 4. 80 19.8 461 9.1 5070 -
NOTE: |
|
1. MHF-3 = 86 percent MMH + 14 percent NpHy
2. 100 psia to vacuum, 100 percent theoretical shifting equilibrium, ¢ = 60

b/

‘POLDOUT FRAME



Table 12. '

Comparison of Candidate Liquid Propellants

Fuel Temp (°F)

Oxidizer

Temp (°F)

Chamber Storability Criterion
Boiling Point Boiling Point Regenerative Temperature

Cooling at Environmental
ezing | 14,7 90 Freezing| 14.7 90 Merit Temperature of
int psia psia Point psia psia Rating 150°F 0°F | -150°F
35 236 355 -363 -307 | -266 1.48 0.0202 | 0.0126 | 0.0072
35 236 355 -264 - 99 -23 1.56 0.0218 [ 0.0318| 0.0184
62 189 305 -371 -230 | -177 1.11 0.0222 | 0,0237 | 0,0255
-62 189 305 -264 -99 -23 1.13 0.0228 | 0.0398 | 0.0264
62 189 305 -363 -306 | -264 0. 85 0.0202 | 0,0210| 0.0169
-65 194 310 -153 8 104 1.32 0.0302 | 0.0377| 0.0170
62 189 305 -153 8 104 1,26 0.0305 { 0.0380 | 0.0172
.96 -259 [-197 -363 -305 | -262 0.15 0.0049 | 0.0079 | 0.0207
.66 -135 -61 -371 -230 | -177 0.18 0.0079 | 0.0183| 0.0410
.96 -259  |-197 -362 -297 | -258 0.28 0.0068 | 0,0110] 95,0296
£35 -423 |-408 -363 -307 | -266 6.29 0.0040 { 0.0057 | 0,0105
£35 -423  |-408 -362 -297 | -258 15. 4 0.0067 | 0.0096 | 0.0171

‘POLDOUT FRAME
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it may become impractical to design and develop ablative cooled engines at
the required thrust level due to the excessive weight penalties incurred.
Those combinations which exhibit the higher values have the greater cooling
capacity.

Selected Propellant Combinations

To provide the basis for the propulsion subsystem design data, the
following propellant combinations were selected as representative of the
chemical systems:

LOZ/LHZ
OF,/ByHg
OF,/MMH

87. 5% FLOX/MMH
82%FLOX/CHy

The above combinations were selected, in part, on the basis of performance
and storage considerations. Some of the thermal properties of the propellant
constituents are listed in Table 13.

Table 13 . Selected Propellant Constituent Properties

Normal
Freezing Boiling Point Critical

Propellant Point (1 Atmos) Temperature
Constituent °F °R °F °R °F °R

O2 -362 98 -297 163 -182 278

H2 -435 25 -423 37 -400 60

OFZ -371 69 -230 230 -73 387

B2H6 -266 194 -135 325 53 513

MMH -62 398 189 649 593 1053

87.5% -363 97 -305 155 -203 257

FLOX

CHy -296 164 -259 201 -116 344
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Liquid oxygen/liquid hydrogen was selected as the propellant combina-
tion representative of the high performance levels and storability character-
istics which are consistent with large orbital launch vehicles. There is also
a wealth of experience with this propellant combination and the possibility
exists that existing (e.g., J-2) engines can be used in upper stages. Also,
it may be possible to utilize this propellant combination in the mission module
life support subsystem.

The remaining propellant combinations exhibit a reasonable degree of
in-space storability when both boiling and freezing characteristics are
considered. The OF2/B2H¢ and 82%FLOX/CHg4 represent high performance,
moderately space-storable combinations. An 87.5%F LOX/MMH propellant
provides a somewhat lower specific impulse with a substantial increase in
bulk density. Itis a combination that is readily available; however, it does
not exhibit the same storability characteristics as does OF,/MMH. At
present, OF, is being produced in limited quantities and the costs of
establishing the production rates required for the missions considered in
this study may preclude its use. Both 87.5%FLOX/MMH and OF/MMH are
somewhat more storable overall than either OF,/ByH¢ or 82%FLOX/CHy at
the expense of performance potential. The 82%FLOX/CHy is inexpensive,
has a moderate density, high specific impulse, but it has the lowest regen-
erative cooling capability. The OF2/MMH provides the greatest potential for
use in large regenerative cooled engines since it has an 11 percent margin
over that required.

During subsequent propulsion module and system analyses, LO/LH)
and 87. 5% FLOX/MMH were assumed as the nominal cryogenic and storable
propellants, respectively. A bulk density of 317 kg/m3 (19.8 1b/ft3), a
mixture ratio of 4. 80, and a specific impulse of 450 seconds were used
during the sizing of LO,/LHp propulsion modules. The corresponding values
for 87.5%FLOX/MMH were 1233 kg/m3 (77.0 1b/ft3), 2.75, and 387 seconds,
respectively. '

Tank Pressure and Propellant Temperature Regimes

To establish the propellant tank pressure and propellant temperature
regimes for the selected propellant combinations in this study, representa-
tive pump-fed and pressure-fed systems were assumed. Pressure schedules
consistent with each type were then calculated, and the allowable temperature
rise regime for each was established.

Vapor pressure data as a function of temperature for several propellant
constituents are provided in Figures 23 through 27.
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Pump-fed

A maximum tank operating pressure (vent pressure) of 50 psia
(3.52 kg/cmZ) is assumed. The nominal propellant turbopumps net positive
suction head (NPSH) inlet requirements have been developed, based on
current pump design requirements and the normal boiling point propellant
density relationships. Table 14 provides a summary of the pump-fed tank
pressure and propellant temperature estimates, These estimates are
representative of pump-fed propellant systems, where structural and dynamic
load considerations for the vehicle influence vent pressure requirements,

Pressure~-fed

A tank operating pressure of 225 psia (15. 82 kg/cmz) has been utilized
as representative of pressure-fed propellant feed systems. An engine
chamber pressure requirement of 150 psia (10.55 kg/cmz) is typical of
pressure-fed engine systems and has been assumed here., To assure that
flashing through the injector system will not occur, a propellant vapor pres-
sure margin of 15 psia (1. 05 kg/cm2) below the chamber pressure has been
assured. The selected propellant pressure-temperature estimates for
pressure fed systems are summarized in Table 15.

Region of Applicability of Stored Gas and Evaporative Pressurization

Representative stored gas and propellant evaporative pressurization
systems weight comparisons have been developed based on vehicle propellant
requirements, These data are shown in Figure 28 over a range of pro-
pellant weight, The pressurization systems weight in this figure includes:
pressurant medium, storage vessel, plumbing and control components, and
required brackets and supports., In developing these weights, there was a
representative estimate made of the engine thrust level utilized with vehicle
propellant quantity to account for the variation in plumbing size and control
component weight with propellant flow requirements. Example points of
existing systems are shown in Figure 28.

Stored gas (usually helium) pressurization systems are applicable to
liquid propellant pressure-fed propulsion systems; evaporative propellant
pressurization can be utilized to provide the turbopump NPSH requirements
of pump-fed systems if the propellant is a volatile liquid, In most pump-fed
applications, a combination propellant bleed and stored gas system is utilized.
The stored gas system provides for engine pressure requirements until
steady-state operation is accomplished.

SCALING EQUATIONS FOR STORED GAS PRESSURIZATION SYSTEM

Representative cold stored gas propellant pressurization system weight
scaling equations and parametric data have been developed for pump-fed and
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pressure-fed liquid propulsion systems. The propellant combination

OF,/MMH was utilized; however, the results are reasonably good for other
[ 4

propellants of interest.

Pump-fed Propulsion Systems

The pressurization system weight scaling data for pump-fed propulsion
systems are based on the following:

OFZIMN[H with a mixture ratio of 2. 42

Propellant tank maximum operating pressure (Pp) (vent pressure)
of (Pp) = 50 psia (3. 52 Kg/cmz), both tanks at same pressure,

Pressurant medium GH, stored at 530°R and 3000-4000 psi
(211-281 kg/cm?); cutoff pressure = Pp + 100,

Adiabatic system assumed
Ti-6Al1-4V titanium pressure storage vessel; safety factor of 2

The pressurization weight scaling equations derived for the pump-fed
system under the established assumptions are as follows:

1. Pressurization gas = (0. 000815) (total propellant weight)
2. Pressurization storage sphere = (0. 00675) (total propellant weight)

3. Plumbing, controls, and associated hardware

1/8
ENGINE THRUST
46

= (4. 85) EXP <
where

engine thrust is in kilograms.

Pressure-fed Propulsion Systems

The pressurization system weight scaling data for pressure-fed pro-
pulsion systems is based on the following:

OF3/MMH with a mixture ratio of 2, 42

Both propellant tanks at same operating pressure (Pp) of 225 psia
(15, 82 kg/cm?)
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Pressurant medium GHe stored at 530°R and 3000-4000 psi
(211-281 kg/cmz); cutoff pressure = Pp + 100

Adiabatic system assumed
Ti-6A1-4V titanium pressure storage vessel; safety factor of 2

The pressure-fed propulsion system pressurization system weight-
scaling equations based on these assumptions are as follows:

1. Pressurization gas = (0. 00385) (total propellant weight)
2. Pressurization storage sphere = (0.032) (total propellant weight)

3. Plumbing, controls, and associated hardware

1/8
_ (8.20) EXP <ENGINE THRUST>
' 46

where:
engine thrust is in kilograms.

Parametric Data

Parametric data have been developed to provide weight estimating
procedures for both the stored gas propellant pressurization system gas and
storage vessel. These data are shown in Figures 29 and 30, respectively.
A representative range of propellant tank pressures are covered. Propellent
tank pressure requirements for pump-fed systems are in the lowest range,
while pressure requirements for pressure-fed propulsion are in the higher
ranges illustrated. GHe and spherical titanium storage vessels are assumed.
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ELECTRICAL POWER SUBSYSTEM PARAMETRIC ANALYSIS

The purpose of the electrical power subsystem analysis was to develop,
for a spectrum of candidate systems, relationships between operational power
levels, subsystem weight and dimensional requirements, and the heliocentric
radius at which a system might be used. These relationships were based on
the estimated technology in the 1980 to 2000 time period. Several subsystems
appropriate to mission modules (with mission durations between one and four
years) and planetary excursion module descent stages (with occupancy times
not greater than ninety days) were considered. The Earth reentry module and
planetary excursion module ascent stages were assumed to be occupied for no
more than 24 hours. Therefore, only batteries were considered for use in
these modules during the module and system synthesis analyses discussed in
the System Synthesis and Parametric Analysis section (Appendix D).

The spectrum of candidate electrical power subsystems for 1980-2000
application is quite broad when consideration is given to the many possible
combinations of power sources and converters. Identification of the most
suitable combinations in this study is based on demonstrated capability of
developed systems or systems in the process of development, and on pro-
jected improvements. Projections must be done with care and on a realistic
basis since systems are in various stages of development with technology
breakthroughs and/or monetary investments being the pacing items. The
electrical power subsystems which are expected to be available through the
remainder of this century and the applicable power levels are shown in
Figure 31. Also shown in the figure is the expected mission module power
requirements. (It should be noted that electric propulsion systems were not
considered during this study.)

In order to compare candidate subsystems on a realistic basis, prom-
ising combinations of energy sources and power conversion systems were
analyzed on an equal basis such that appropriate weight variations were
included to compensate for inherent differences in the various combinations.
Also, the most advantageous utilization of the candidate subsystems was
identified.

In general, the approach taken was to obtain system weights from
reference reports describing systems applicable to 1975-1985 interplanetary
manned missions. Much of these data were readily available for nuclear and
solar photovoltaic systems from NR Space Division and Atomics International
studies. Solar dynamic systems data were prepared by assuming the same
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conversion design as for applicable isotope systems with only the heat source,
i.e., solar concentrator-absorber, being different. Chemical systems data
were available from the Apollo and Apollo Applications Programs. The
accumulated data were examined and an adjustment made for expected system
improvements by the 1980-2000 time period. Detailed weights were tabulated
and a comparison was made between extrapolated systems and reference
design weights.

This section presents a detailed summary of system weights followed
by a general discussion of each applicable system (i.e., reference design
1975-1985) and a brief explanation of system improvements and extrapolations
to arrive at 1980-2000 weights.

COMPETITIVE POWER SUBSYSTEMS

Competitive subsystems for the mission moduleland the planetary
excur sion module descent stage are listed in Tables 16 and 17, respectively.
Since the selection of these subsystems cannot be made on weight alone,
Tables 18 through 21 discuss qualitatively the other subsystem characteris-
tics which must be considered in a complete evaluation. Many of the same
disadvantages apply to all candidate subsystems. To avoid undue repetition,
disadvantages were listed only for subsystems that it was felt were most
affccted; i. e., these are to be taken only as relative measures. Examples
of such items are large radiator areas, integration/operation constraints,
orbit sensitivity, heliocentric radius sensitivity, and shock sensitivity.

WEIGHT SUMMARY

In order to establish candidate power subsystems, first effort was
given to projecting overall subsystem weight as a function of nominal power
level. Planetary orbit occultation and heliocentric radius effects on the
referenced solar power subsystems were considered but are not included in
the projected weights. The weight allowance for occultation effects are
described in the Ground Rules section. Radiators have been sized based on
a 224 K (440 F) sink and Earth heliocentric radius meteoroid flux.

A breakdown of the component considerations, component weight, and
the total subsystem weight and volume of the candidate combinations are
presented in Tables 22 through 25. No effort was made to provide individual
component weights at 5 and 20 kWe outputs in Tables 22 and 23. Present
subsystem definition does not allow scaling in this detail to be very realistic
and it was felt that the subsystems could best be scaled on a total weight
basis. The gross weight values are presented for all power levels on the
assumption that the scaling uncertainty for the components is random and

! Thermionics were evaluated but are not considered to be available for the time period of this study.
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compensating. The remaining blanks in Tables 22 and 23 are due to a lack
of available information in the reference designs; e. g., the unavailability of
power conditioning in the reactor power subsystem reference design since
the reference is a study only of power sources.

To explain apparent discrepancies in subsystem characteristics with
later text material, consider a typical value such as heat source outlet
temperature (Table 23). The heat source temperatures for the isotope
subsystems were taken to be 83 K (150 F) above the top cycle temperature.
For a mercury Rankine cycle, the mercury superheated temperature is
presently a maximum of 977 K (1300 F). To account for subsystem improve-
ments, this maximum temperature was increased to 1033 K (1400 F); i. e.,
see Table 35; the heat source temperature is then taken as 1116 K (1550 F)
as shown in Table 23.

Subsystem redundancy for a projected reliability of 0. 999 is shown in
Tables 26 and 27. These configurations are reflected in the weights shown
in Tables 22 through 25.

Power subsystem gross weights are shown as a function of delivered
power on Figures 32 through 36 for various mission durations. Similar data
are shown in Figures 37 through 40 for subsystems appropriate to planetary
excursion modules for various lifetime requirements.
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Table 16.

Competitive Auxiliary Power Subsystems for Mission Module

Nominal Power

Mission Duration (years)

52. ~ 4k
Level (kWe) > 4
15 to 30 Rankine Rankine
‘ Isotope Brayton Isotope Brayton
Thermoelectric Thermoelectric
Rankine Rankine
Reactor { Brayton Reactor { Brayton
| Thermoelectric Thermoelectric
Solar photovoltaic
<15 Rankine Rankine
Isotope Brayton Isotope Brayton
Thermoelectric Thermoelectric

Solar photovoltaic

*Solar photovoltaic systems omitted since longer missions are consistent
with heliocentric radius >2.5 to 3 AU
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Table 17.

Excursion Module

Competitive Auxiliary Power Subsystems for Planetary

Nominal
Power Operating Time (days)
Level
(kWe) 2 10 30 60
20 Fuel cells Fuel cells Solar photovoltaic Solar photovoltaic
Solar photovoltaic | Solar photovoltaic Isotope thermoelectric | Isotope thermoelectric
Isotope thermoelectric
10 Fuel cells Fuel cells Solar photovoltaic Solar photovoltaic

(w2l

2

~ Solar photovoltaic

" Chemical dynamic

Primary batteries

Fuel cells
Solar photovoltaic
Chemical dynamic

Primary batteries

Fuel cells
Solar photovoltaic
Chemical dynamic

Primary batteries

Solar photovoltaic

Isotope thermoelectric

Fuel cells
Solar photovoltaic

Isotope thermoelectric

Fuel cells
Solar photovoltaic

Isotope thermoelectric

Isotope thermoelectric

Fuel cells
Solar photovoltaic

Isotope thermoelectric

Fuel cells
Solar photovoltaic

Isotope thermoelectric

Isotope thermoelectric

Fuel cells

Solar photovoltaic

Isotope thermoelectric

Fuel cells
Solar photovoltaic

Isotope thermoelectric
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Table 18. Nuclear Reactor Auxiliary Power System Considerations

Advantages Disadvantages
REACTOR
No attitude control dependence Operational radiation hazard
No space radiation degradation Handling and storage safety

Availability of fuel
Long life

Large shielding weight

After shutdown heat removal

POWER CONVERSION SYSTEMS

Thermoelectric

High reliability
No moving parts
Little degradation
Long life

Large radiator

Low efficiency

Rankine Cycle

Small radiator

Lowest weight for given
temperature level

Corrosion problems
Zero-G phase separation problems

Low reliability, requires
redundancy

Stop-restart requirements

Brayton Cycle

High efficiency

Considerable existing
technology

Large radiator

Low reliability, requires
redundancy

Stop-start requirements

High sensitivity to heat sink
temperature
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Table 19.

Isotope Auxiliary Power Source Considerations

Advantages

Disadvantages

ISOTOPE SOURCE

Low radiation source

Light weight

High operating temperature

No attitude control requirement

Low sensitivity to acceleration
and shock

Continuous heat and radiation
Ground handling and safety problems
Expensive fuel

Limited availability

POWER CONVERSION SYSTEMS

Rankine Cycle (Mercury)

Good cycle efficiency
Light weight
Low radiator area

Excellent development background

Complex turbine design
Toxic working fluid
High temperature cycle

Two phase conversion cycle

Rankine Cycle (Organic)

Good cycle efficiency
Light weight
Low temperature cycle

Simple turbine design

Working fluid decomposition
Poor growth potential

Large radiator area

Poor development background

Two phase conversion cycle

Brayton Cycle

No corrosion, inert gas or
working fluid

Single phase conversion cycle
High cycle efficiency
Low isotope inventory

Excellent growth potential

Large radiator area

High weight

Large ducts

Requires high temperature isotope

Longer development

Thermoelectric

Compact
Static converter
High inherent reliability

Good development

Low efficiency
Large radiator area
Poor growth potential

Large isotope inventory
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Table 20, Solar Auxiliary Power System Considerations

Advantages Disadvantages

POWER CONVERSION SYSTEMS

Dynamic
Good growth potential Poor development
Readily available energy source Orientation requirement

High weight

Photovoltaic
Static converter Large area
Light weight Environmental sensitivity
Excellent development Orientation requirement
Proven system Integration/operation constraints

Orbit sensitivity
Heliocentric radius sensitivity
Shock sensitivity

Aerodynamic drag
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Table 21. Energy-Limited Auxiliary Power System Considerations

Advantages

Disadvantages

FUEL CELLS

Light weight

Delivers drinking water

Commonality of reactants with vehicle propellants
No electromagnetic interference generated

Proven hardware

H{azardous reactants

Possible malfunctions due to alkaline electrolyte
leakage

Large overloads require battery and charger
Monitoring required

Complicated startup and shutdown

Chemical Dynamic

Simple startup and shutdown
Commonality of reactants with vehicle propellants
Intermittent duty possible ’

Compact turboalternator-rectifier

Effectively limited to intermittent duty

Turbine materials technology not compatible
with higher encrgy reactants

Source of electromagnetic interf:rence

ELECTRIC STORAGE BATTERIES

Silver-Zinc

Highest energy density battery qualified to date
Long dry shelf life, 5 years +

Close voltage regulation

Extremely high rate discharge handling capability
Dry condition storage at -85°F to +165°F

Low internal cell resistance

Life after activation is limited for primary
batteries from few hours to weeks

For secondary batteries, maximum 6 months
1.ife extension to one year by 1980

Length of life is function of number and depth of
discharge

Primary batteries require activation immedi-
ately before use

Operating temperature limited to -20°F to +165°F
with optimum performance at 60°F to 80°F

High energy density

Cycle life two to three years.
by 1980

Five years life

l.ong charge retention, As much as 85% of

original capacity retained after one year
charged wet stand at 70°F

Negligible gasing on discharge
Dry storage life greater than 3 years

Cycle life approaching that of nickel-cadmium
batteries by 1980

1.ow internal cell resistance

Silver-Cadmium

50% sacrifice in energy density over silver-zinc

Operational temperature limited from
-20 to +165°F

Nickel-

Cadmium

l.ong cycle life T

Proven in space application
Unlimited storage life

Relatively less expensive than other space type
batteries

Very low energy density

About half the energy density of silver-cadmium
batteries

Competes with silver cadmium batteries only for
long missions and this advantage will disappear
by 1980; thercfore not considered in this study

[sotope Thermoclectric {Table 19)

Solar Photovoltaic (Table 20)
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Table 22. Auxiliary Power Systems Using Nuclear Reactors
(Projected to 1980-2000)

Thermal Nuclear Reactor

Thermal Nuclear
Reactor With

Thermal Nuclear Reactor

With Thermoelectric

System Characteristic with Brayton Cycle Mercury Rankine Cycle Converter
Electrical Power Output Level (Kilowatts) 5 10 20 20(1) 5 10 20 15(2) 5 10 20 15(3)
Reactor outlet temperature {°F) 1300 1300 1300 1210 1340 1300
(°K) 978 978 978 928 1000 978
Overall system efficiency (percent) 13,1 13,1 7.0 5.8 5.4 5.4
Reactor weight (1b) 388 755 388 388 388 670
Primary heat loop weight (1b) with heat exchanger 79 157 298 393 153 186
Power conversion weight (1b) 2519 5800 1282 1777 1457 2272
Radiator weight penalty, separate (ib) 885 1769 558 688 1294 2370
Thermal shield weight, including 511-pound 1118 1355 921 .1581
disposal system (1b)
Radiation shield weight 125-foot separation, 2980 7064 2
60-foot diameter (1b)
Boom and cable weight 125-foot separation (1b) (4) 575 1955 545 630 980 330
Overload battery weight {1b) 1676
Conditioning equipment weight (1b) 1500 2950 1900 861
Redundant weight required per year (lb) 650 1242 2435 1062 1611 2751 276 562 1030
Total weight {lb) 1 year 5900 | 9044 17189 | 23481 | 7062 9107 15800 7551 10214 17750
Z years 6550 16286 19624 8124 10718 18851 7827 10776 18780
3 years 7200 | 11528 22059 9186 12329 21302 8103 11338 19810
4 years 7850 | 12770 24489 10248 13940 24053 8379 11900 20840
5 years 8500 | 14012 26924 11310 15551 26804 8655 12462 21870
Radiator temperature (°F) inlet 413 413 413 413 622 622 622 525 525 525 525
(°K) 485 485 485 485 601 601 601 547 547 547 547
Radiator area (feetz) 287 575 1150 1150 | 240 360 500 386 772 1410 118;
Total system volume required (!eet3) 1 year 2600 365 765 563 1230

“)MORL, Reference 3
()Reference 4

(3)Reference 5

M‘Relraction mechanism included in boom and cable weights.
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Table 23. Auxiliary Power Systems With Radioisotopes
(Projected to 1980-2000)

System Characteristic

Radioisotope Pu238
Brayton Cycle

Radioisotope pu238
Mercury Rankine

Radioisotope Pu?38 Cascaded
Thermoclectric

Electrical Power Output, Conditioned (Kilowatts)| 10(3) | 5 10 20 5 10 20 1ol3) 5 10 A 20 [103)
Heat source outlet temperature, ("F)“) 1690 1790 1550 1450 1800 1600
(°K) 1194 1250 1116 1061 1255 1144

Overall system efficiency (percent) 19.8 28. 4 14,0 11,4 7.15 5. 8%
Heat source weight (1b) 530 345 792 990 1425 1855
Primary heat loop weight (lb) 695 450 535 668 452 587
Power conversion weight (Ib) 2404 1560 678 849 275 358
Radiator weight penalty, separate (1b) 1150 745 263 329 595 775
Radiation shield weight (1b) 273 175 376 470 750 975
Thermal control apparatus weight (1b)(4) 278 180 322 403 592 770

Conditioning equipment weight (1b) ! 1040 675 720 300 830 1079
Redundant weight required per year (lb)(Z) 1358 880 408 510 505 659

Total weight {1b) 1 Year : 6370 2810 4130 5750 2510 3690 5130 4610 3600 | 4920 8600 6400

2 Years 7730 | 3400 5010 6950 2790 4100 5730 5120 3970 5430 9500 7060

3 Years 9090 4010- 5890 8150 3060 4510 6300 5630 4340 5930 10350 7720

4 Years 10450 | 4600 6770 9300 3330 4910 6860 6140 4720 | 6440 11250 | 8380

5 Years 11800 | 5170 7650 10500 3610 5320 7450 6650 5100 6940 12150 9040

() i s e

Radiator temperature, Tom *F) 72 400 410
(*K) ! 295 478 483

Radiator area, tZ (5) | 1090 710 165 204 350 460

!

Total system volume required, 1 year (ﬁ)3 " 107 65 70 98 23 40 47 55 39 55 95 70

(1) 150 F above top cycle temperature

(2) 1st year redundancy included in total weight

(3) Interplanetary Flyby Missions of 1975-1985 time period

(4) Includes auxiliary radiator weight penalty

(5) Area requirements are less than shown in Figure 56 since system performance
improvements (Table 35, Page 150) have been assumed in this table of summary values.
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Table 24, Auxiliary Power Systems With Solar Energy Source

System Characteristic Solar Cells Collector Rankine Collector Brayton
Solar Cells at 1 AU 1.5 AU 34.0AU 1.0 AU 1.5 A, U, 3 AU 1 AU 1.5 AU 3 AU
Electrical Power Output, Conditioned
(Kilowatts) 5 10 20 6(4) 10 10 10 10 10 10 10 10
Heat source outlet temperature (°F) 062 | 96N 9o 13y | Lo | 5602 1550 1550 1550 | 1690 1690 1690
(K} 309 309 309 328 | 250 185 1116 1116 1116 1194 1194 1194
(4) (4)) (4) (4) (4) (3) (3) (3) (3) (3) (3)
Overall system efficiency 11.7 11.7 11.7 10.5 11,7 11.7 10.5 10.5 10.5 | 21.2 21.2 2.2
(percent)(3)(4)
Array weight (1b) 220 440 885 1912 1000 3960
Solar collector weight (1b) 304 645 2500 140 306 1200
Primary loop weight (1b) 228 228 228 450 450 450
Orientation penalty per year (lb)(b) 30 60 120 269 140 540 41 91 350 19 42 160
Power Conversion Weight (1b) 685 685 685 | 1560 1560 1560
Radiator weight penalty, integrated (lb)
Radiator weight penalty, separate (lb) 263 263 263 745 745 745
Power conditioning equip. weight (lb} 415 660 920 700 660 660 720 720 720 675 675 675
Backup battery weight (1lb) 195
Occultation battery weight (lb) 580
Occultation heat sink weight (lb)
Redundant weight required 33 58 96 83 230 425 485 865 685 700 790
per year (lb)
Total Weight (1b) 1 year 675 1210 |1980 3650 1800 5165 2240 2630 4750 | 3590 3780 4790
2 years 705 1290 2080 1885 5395 2670 3120 5610 | 4270 4480 5580
3 years 740 1330 2170 1965 5615 3090 3540 6040 | 4960 5180 6370
4 years 725 1380 2270 2045 5855 3520 3970 6460 | 5640 5880 7160
5 years 805 1440 [2360 2135 6085 3940 4390 6830 | 6330 6580 7950
Solar collector area (ftz) 1060 2380 9490 660 1480 5900
Solar array area, 1 year (ftz) 495 990 [1980 1650 1840 7250(7)
Radiator area 1ft2) 165 165 165 710 710 710
Radiator temperature, Tin { °F) 558 558 558 286 286 286
(K) 565 565 565 414 414 414
Total system volume, 1 year (ftg) 14 26 49 38 42 110 3z 37 68 72 75 9C

(1

(2} Solar array equilibrium temperature

(3) Includes concentrator-absorber ( conc-ABS = 75%}

Interplanetary Flyby Missions (Earth Orbit Phase) 1975-1985 time period, 262 nautical miles

(4) Solar cell efficiency AMO at standard temperature (overall efficiency less because of temperature effects,

packing factor, etc.)

5

to show effects of occultation

Includes shadow (occultation) allowance since this is Earth Orbit. This case is presented only for comparison

(6) Total orientation-penalty for first year shown, with five percent added for each additional year included in array weight.

(7

that at 1.0 AU due to difference in solar constant.

Drastic increase in area due to low solar intensity, i.e. area requirements, should be in the order of nine times
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Table 26.

Power System Redundancy to Achieve 0.999 Reliability
for Mission Module (Based on 10 kwe System)#

First Year Each Additional Year
Redundant
Power
Active | Redundant Redundant Conditioning
Power System PCS PCS PCS (percent)
Reactor
Rankine - 2% 1 1 5
‘ Brayton 1 2 1 5
‘ Thermoelectric - 5% Converter 5
\ Isotope
Rankine 1 2 1 5
Brayton 1 2 1 5
Thermoelectric 1 - 5% Converter 5
Solar
Rankine 1 2 1 + 20% Concen- 5
trator Area
Brayton 1 2 1 + 20% Concen- 5
trator Area
Solar photovoltaic 1 - 5% Area 5
*Number of systems vary with power level; see text,
*%5 kWe module.

Table 27. Power System Redundancy to Achieve
0. 999 Reliability for Planetary Excursion Module
Redundant Modules
Power System Active Modules Active | Inactive
Fuel cell 2 1 1
Chemical dynamic 1 0 0
Battery 1 0 0
Isotope thermoelectric 1 0 0
Solar photovoltaic 1 0 0
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GROUND RULES

Reliability and Maintenance Philosophy

A power subsystem reliability goal of 0.999 was assumed for this study,
reliability being defined here as the probability of providing the required
power for the duration of the mission. Since no known power system can
achieve a reliability of 0. 999 for all missions unassisted, maintenance and/or
redundancy is utilized for system synthesis.

No attempt was made to distinguish between total load and essential
load requirements since these levels vary with individual mission objectives.
In this respect, then, some of the power system weights are conservative.
For example, a 30-kWe power level total design requirement could be met by
utilizing six 5-kWe systems in parallel and, thereby, permitting failure of
one or more system to deliver a reduced essential load level. Although
there would be a weight penalty associated with the parallel system, an over-
all weight saving may be effected through a reduction of redundant systems
and spare parts. Smaller systems are combined, however, when total power
requirements exceed practical size limitations of particular systems.

Since reliability forecasts are generally not available, failure rates of
dynamic conversion equipment operating in the post-1980 period are assumed
to be one-tenth that of present-day demonstrated values. For those systems
having no suitable failure rate history at present, failure rates are projected
based on the demonstrated values of similar type equipment.

The 0. 999 reliability was assumed to be met through redundancy and
maintenance except where it is not practical due to hazards, complexity, or
inaccessibility. For example, high speed turbo-alternators and compressors
were assumed to have a one-year life, would be replaced as a unit, and
would require redundancy for each additional year of operation. Additionally,
5 percent of the electrical power conversion system weight is allowed for
power conditioning system spare parts.

Environmental Effects

Temperature (Heliocentric Radius)

The effect of temperature was found to be critical only for solar power
systems (radiators excepted) wherein power output is directly a function of
local solar photon flux density, which establishes equilibrium temperature.
Compensation was provided for the decreased performance of solar power
systems with increased heliocentric radius. Although weight is a function of
heliocentric radius, no advantage was taken for distances of less than one AU
(0.38 AU being the smallest heliocentric radius of concern). This was based
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on the assumption of meeting a constant power requirement from earth orbit,
although in practice the requirement would likely be tailored for a given
mission.

Space Radiation

The effects of space radiation are critical only for photovoltaic cells

at flux values 21010 Protons Space fluxes of electrons and protons cause
cm

defects by knocking atoms out of their equilibrium lattice positions, thereby

forming recombination centers for electron-hole pairs prior to collection.

Thus, the cell power output is inversely proportional to total intercepted

flux and must be compensated for. Figure 76 (Page 179) shows power

degradation for different values of proton flux.

Several methods of reducing space radiation effects have been estab-
lished. These include the use of a fused silica shield over the exposed
surface of the cell, providing additional cells to achieve an end-of-life power
level, and using more radiation resistant crystals. For this study, advantage
is taken of all three methods based on dendritic crystal growth with weight
allowances for additional cells of projected epitaxial (lithium doped) and
drift-field systems.

Meteoroid Impact

The meteoroid environment has a pronounced effect on the design of
solar cells, solar mirrors, and radiators. Meteoroid flux density is con-
sidered to be a strong function of heliocentric radius; therefore, the pre-
diction of total flux interception quantities must be approached through
trajectory integration. The projected influence of meteoroid impact on future
developed solar cells and mirrors is nebulous at best. For these reasons,
the estimated weights are the result of judgment, and an earth orbit base-
line for radiator design. These establish baseline parameters that may be
modified for a given mission for promising systems.

For solar mirrors, the assumption of a five-year life was made with a
weight allowance of 20 percent increase per year duration of mission. The
weight allowance for solar cells is included in an overall degradation of
5 percent per year.

For radiator design, data exists for an earth orbit (Reference 3) and
was used herein for sizing purposes. Incremental weights must be added
to match specific mission profile requirements.
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Occultation Effects

Solar power systems in planetary orbit require secondary energy
sources during shadow periods. With photovoltaic power systems, secondary
batteries are normally used. Power systems utilizing solar heat could use
either secondary batteries or thermal energy storage devices. Use of ther-
mal storage devices is restricted to solar concentrator type power systems
such as thermoelectric, thermionic and dynamic systems. Cycle efficiency
of all these latter systems is dependent on heat source temperature. They
are designed to operate at the maximum permissible equipment temperature.
A thermal energy storage device used to augment these systems must main-
tain this operating temperature for best efficiency. Use of the latent heat of
molten material while allowing a few hundred degrees of temperature change
was surveyed for this application. Even with thermal energy storage,
secondary batteries may be required to compensate for fluctuations in gener-
ator output and to supply peak loads. The materials considered for thermal
energy storage are corrosive in the molten state and their containment is not
yet possible. They also shrink considerably during solidification (for example,
16 percent for LiH) and, therefore, present difficult heat transfer problems.

Depending on the material used, 210 to 730 Whr/kg can be stored.
Estimating 20 percent additional weight for containers and 10 percent for
converter efficiency, the usable stored energy will be between 18 and
60 Whr/kg. In this study, thermal energy storage was not considered in the
subsequent mission/system analyses since the availability of systems of this
type is not certain for the time period considered and system reliability has
not been established.

The approach for determining additional required capacity for solar
power systems augmented by secondary batteries is discussed in the following

paragraphs.

Silver-cadmium secondary batteries have a discharge-charge efficiency
of 70 percent to 75 percent. This efficiency is a function of battery discharge
rate, depth of discharge, temperature, and rate of charge. With the assump-
tion of a one-hour discharge rate, the plateau voltage per cell is 1. 05 volts.
Maximum voltage at start of discharge is 1.25 volts and, declines to the
plateau voltage after 20 percent discharge of total capacity. Until maximum
depth of discharge is less than 66 percent, the charge voltage will also be
constant at about 1.45 volts during constant current charging. This voltage
will rise when 85 percent to 90 percent charge is reached. The end of charge
voltage should be kept below 1. 55 to 1. 60 volts per cell for maximum life.
This corresponds to approximately 95 percent of full charge. Based on this
data, a 72 percent discharge-charge efficiency was used to determine the
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required increase in solar panel size. The battery charger efficiency is
assumed to be 85 percent. Thus, the overall charge-discharge efficiency
becomes 0.72 x 0.85 = 0.61.

Figure 41 provides the necessary relationships to size the required
primary system output to accommodate secondary battery charging during
eclipse. An example of its use is provided for clarification since these
weights must be added to the projected solar power system weights presented
in the Weight Summary for particular missions.

Example:
Hypothesis;

Primary system - Photovoltaic power system
Mission - Planetary orbit, three months duration
Orbit period - 100 min (1. 67 hr)

Dark period - 40 min (0.67 hr)

Solar panel normal load - 10 kWe

Battery load during darkness - 5 kWe

Solution:
Number of charge-discharge cycles (2175-hr mission)

= 2175 hr = 1310 cycles

1.67 hr/cycle
Silver-cadmium battery energy density = 20 Whr/kg

Battery weight = _2kWe 250 kg
20 Whr/kg

(see also Figure 86, Page 205)

Shadow duration _ _ % Normal load _ 0. 67 hr 50% = 33.3%
Illumination duration while dark 1.00 hr

Ratio of required solar panel output to rated load (from Figure 41)
=1.55

Required solar panel output = 1.55 x 10 kWe = 15.5 kWe
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Special Considerations

Secondary Systems

Nominal power only was used in sizing the candidate systems. It was
assumed that all selected systems would be able to supply small overload
power demands (10 to 15 percent) for short periods (=15 minutes) but large
peak loads (=200 percent nominal) and/or emergency power would have to be
accommodated by secondary systems whose weights have not been included
in the Weight Summary compared values. The methodology for sizing these
secondary systems is included in this report and can be used when specific
vehicles are tailored to given missions.

Similarly, to satisfy occultation needs, the required increase in power
systems is not included in the baseline solar panel system weights. The
methodology to determine the added weight requirements is included in the
Occultation section and the weight penalties can be assessed for selected
mission profiles.

A minimal battery for initial nuclear reactor start and for downtime:
less than two hours is included in power conditioning weights. For extended
reactor downtime, battery allowances of 110 1b/hr (each module) and gas
bottles of 7 pounds/restart (each module) must be added to Table 22.

Radiation Shielding

For this study, radiation shielding is based on a dose rate of 10 rem
per year. This accumulates to a total dose of 50 rem for the five year
missions, 25 percent of the acceptable dose limit of 200 rem to the blood-
forming organs (bone marrow). For shorter missions, the dose rate could
be increased but the added complexity of varying shield weight (second-order
effect) with mission duration is not merited until the spacecraft is better
defined. '

Shadow shielding is assumed for both the reactor and isotope systems.
For the reactor designs, the shield weights are predicated on a reactor/
mission module separation distance of 125 feet, consistent with the MORL
studies. The dose plane diameter is taken as 60 feet*, a compromise between
the ~35 feet used in some studies (Reference 6) and the 80 feet diameter con-
sidered for MORL. Further dimensional scaling and power source positioning
(location with respect to the mission module)is possible but unnecessary in
the light of the uncertainties inherent in conceptual design. No allowance is

*Subsequent analysis indicates that the mission module diameter need not exceed 33 feet.
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made for a 4 ™ shutdown shield, rendezvous angd docking (thereby requiring
approach within the shadow cone), or retraction and shutdown of the reactor
prior to vehicle mateup. Weight allowances have been included for retraction
mechanisms but not for restart capability since the number of restarts is not
defined.

Radiation shields for the isotope systems for the mission module are
based on an effective distance of 25.4 feet, determined by residence time/
distance integration. This allows for'separation distances of approximately
200 feet between the mission module and the isotope heat source during the
majority of the mission and for much smaller distances when retraction of
the system is required.

CANDIDATE POWER SUBSYSTEMS

Nuclear Reactor System

Nuclear Reactor Sources

Thermal nuclear reactor systems only have been considered for this
application. The associated power conversion systems considered include
Brayton, Rankine, and thermoelectric cycles. For each of these systems/
reactor combinations, projected efficiency data are available for the post-
1980 era and require no further extrapolation. Rankine and thermoelectric
cycle data have been established for a range of power levels and are directly
referenced. For the Brayton cycle, the baseline data are based on the
20-kWe MORL system which is comprised of two 10-kWe power conversion
systems (PCS). Weight scaling as a function of power level for the post-1980
era is augmented by Figure 42, which accounts for (i.e., includes) power
conditioning and a thermal shield. Figure 42, resulted from examination of
available data defining applicable power system to the 1975 to 1985 period.
The information generally described systems in a 4- to 15-kWe range with the
majority of the data at 6.0 kWe. Therefore, this point was used as a refer-
ence. The shape of the curve represents an extrapolation to 35 kWe output
relative to 6. 0-kWe for power conditioning and thermal shield weights.
Shielding is based on a common configuration for all systems (125-foot
separation, 60-foot dose plane), and has a direct influence on the shield,
extension boom, and cables weights evolved.

A weight penalty for startup and restart batteries is required for more
than one hour delay or down-time. This weight penalty is estimated to be
110 pounds per module per hour of continuous down-time; however, no weight
allowance has been made for this condition at this time.

The reactor with the PCS is separated from the mission module by a
boom to accomplish radiation attenuation. The power transmission cables
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leading to the power conditioning system are housed inside the boom.
Parametric weights of boom and transmission cables are shown in Figures 43
and 44.

All power systems considered consist of a nuclear reactor fueled by
uranium with a zirconium hydride moderator and are controlled by beryllium
reflectors. The basic technology and design of these reactors were developed
by the Atomics International Division of North American Rockwell Corp. for
SNAP 10, 2, and 8 reactors (Reference 5).

The fast neutron spectrum nuclear reactors presently under study/
development are concentrating on power levels considerably above 30 kWe; it
is felt that this power level exceeds that for the application considered in this
study. The associated power conversion systems being considered are based
on Brayton, potassium, Rankine, and thermionic cycles. Even though the
efficiencies of fast reactor systems appear attractive, a direct comparison
between fast and thermal nuclear reactors was not undertaken because:

1. The projected long-life reliabilities of fast spectrum nuclear
reactors is uncertain because of the requirement for presently
undeveloped materials to withstand extremely high operating
temperatures.

2. Available data consider power levels in the range of 300 to
3000 kWe, thereby, making extrapolated results doubtful.

Thermal Nuclear Reactor/Brayton Cycle Power System

The reactor is cooled by an eutectic mixture of sodium and potassium
(NaK), forming a primary loop to a heat exchanger located between the pri-
mary and secondary radiation shield (Figure 45). This feature attenuates
activated primary coolant gamma rays. An intermediate NaK loop connects
the primary heat exchanger with a NaK-to-gas heat exchanger. Heated argon
drives the turbine, flows through a recuperator, gas cooler, compressor
and returns via the recuperator to the heat exchanger. A NaK radiating loop
conducts the waste heat from the gas cooler to the radiator. Temperatures,
efficiencies, and corresponding weight breakdown are given in Table 28.

The radiation shield designed to attenuate both neutron and gamma
radiation behind the dose plane of the payload to a maximum level of 10 rem
per year is split into two sections. The upper section is located below the
reactor, while the lower section is located below the primary loop, forming
a gallery for the primary heat exchanger. Both shield sections provide
gamma and neutron shielding and are fabricated from spent uranium and
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Figure 43. Boom Weight for Nuclear Reactor Subsystems
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Table 28. Parametric Data for Reactor/Brayton PCS
(Based on 10-kwe System, Reference 3)

Item Characteristic
Reactor outlet temperature 1300 F
Turbine inlet temperature 1250 F
Turbine outlet temperature 970 F
Radiator inlet temperature 413 F
Compressor inlet temperature 200 F
Turbine efficiency 0.9
Cycle efficiency (EcC) 0.18
Alternator efficiency (Ep) 0.95
Power conditioning efficiency (Epc) 0.83
Compressor efficiency 0.83
Recuperator efficiency 0.9
Losses (L) 0.923
Gross system efficiency (Ec) (Ep) (Epc) (L) 0.131
Power source (reactor) 388 1b
Radiation shield | 2980 1b
Primary loop 79 1b
PCS (1 active, 2 redundant) 2519 1b
Radiator . 8851
Boom and cable 575 1b
Power conditioning system 1500 1b
Thermal shield 1118 1b

lithium hydride. The shield weight reflects several governing parameters,
and the breakdown for several thermal power ratings and system configura-
tions is shown in Table 29.

) The reactor and power conversion systems are separated from the
mission module by an extension boom to complement shield attenuation. A
thermal shield surrounds the reactor and the radiators during launch and
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reactor shutdown operations. This thermal shield prevents fluid freezing
in the radiator tubes. After reactor startup, this thermal shield is
deployed around the boom. Prior to earth reentry, the reactor power sys-
tem is jettisoned by a release mechanism at the end of the boom attaching
structure. After separation of the attaching structure from the mission
module, deorbit action is effected by firing rockets attached to the boom
structure. An elementary guidance system and an RCS system are used to
supplement the main rockets. The weight (511 1bs) of this disposal system
is included in the weight of the thermal shield and reactor disposal system.

The information for this system was derived from the MORL studies,
which were based on an overall life expectancy of two and one-half years,
with a design reliability of 0. 95, approximately equal to 0.98 for one year
since:

Ry = e M2 = 0.95;\t, = 0.05

ty = 21250 hours (2-1/2 years)
A= 0.05 = 0.05 = 2.355 x 10'6, failure rate per hour
t2 21250
tl = 8500 hours (1 year)
My =2 x 1072
R1 = e-O. 02 = 0.98

The MORL Study is based on a power level of 20 kwe, with two active
and four standby power conversion systems. The reliability figures presen-
ted in this study are based on a Poisson distribution (Reference 3).

2 .n
R:é'NM[l-N)\t+(—N%E-)—+...(NM) ]

n!
where
N = Number of operating units
n = Number of standby units
A = Failure rate per hour
t = Operating time, hours
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The preceding equation directly applies to thermoelectric system designs where
component and system lifetimes are assumed to be equal. For systems where
component or subsystem lifetimes equal one-half the system lifetime, an
equation was developed for a total of three such subsystems. Failure density
and success density were combined for each of the three possible paths to
successful operation for system lifetime. These functions were combined to
provide the required reliability formula for both the Brayton and Rankine

power conversion systems (PCS).

2
R = e'Z)‘t [1 + 2\t + (—2—;‘5—)

where
t = One-half system life, hour.
A = Single power conversion subsystem failure rate per hour

A complete failure rate diagram of this 20-kwe Brayton cycle system is
shown in Figure 46.. For the 10-kwe Brayton system, one active and two
standby PCS are assumed with a one-year reliability of 0.98. Failure rate
improvement associated with advances in technology should achieve
the desired reliability of 0.999 by 1980. In general, the Brayton cycle
power conversion has higher cycle efficiencies than other power conversion
systems. Also, its working fluid is noncorrosive. Problems, such as
zero-gravity boiling and condensing, inherent in other working fluids are
nonexistent. One disadvantage of this PCS is the requirement for larger
radiators, since heat is neither added nor rejected isothermally as in a
Rankine cycle PCS. Also, Brayton cycle performance is very sensitive to
system pressure losses. The radiator for the PCS consists of one active
and two redundant loops. Each of the loops comprises straight radiator
tubes that make a single pass along the inside of the radiator wall between
the inlet and outlet manifolds. The tube and shell are fabricated of alumi-
num, with a stainless steel liner bonded to the inside of the aluminum tube
to prevent NaK corrosion. Armor is provided for bumper meteoroid pro-
tection. The alternative radiator coolant considered is FC-75, which
requires a slightly larger radiator area, but results in considerable weight
saving due to elimination of the corrosion protective stainless steel liner.
However, there is the possibility of long-term thermal decomposition at
upper system temperatures, and film temperatures in the heat-sink heat
exchanger are near the critical temperature for the FC-75 coolant. These
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characteristics of FC=~75 have resulted in marginal use of this coolant at
this time. Meteoroid nonpuncture probability of 0.99 for two and one-half
years used in the MORL study compares to approximately 0.999 for one
year nonpuncture probability, which is the basis for the radiator weights
used. AM¥ditional meteoroid shielding may be required, however, for
missions which extend toward the asteroid belts.

Thermal Nuclear Reactor/Mercury Rankine Cycle Power System

The heat source description for this power system is the same as for
the Brayton cycle power conversion system previously described. Thermal
power levels are different due to differing overall cycle efficiencies, for
specific electrical output ratings.

The power conversion system consists of a mercury boiler, a combined
rotating unit consisting of mercury pumps, turbine and alternator, and a
radiator-condenser, as shown schematically in Figure 47. Efficiencies,
temperatures, and component weights are given in Table 30. This power
system is considered for mission module application for lifetimes of from
one to five years. For power conversion, a 5-kwe unit is assumed as the
basic building block of this system, and multiples of this unit are used to
arrive at higher power ratings. There is hope of developing a 25-kwe com-
bined rotating unit, At present, however, this is only a matter of concept.
For one-year operation, present day studies show an overall system
reliability of 0.98, using multiples of 5-kwe active loops up to four
total units (equivalent to 20 kwe) with one redundant unit, as indicated in
Figure 48, with two redundant units used for ratings up to ten active loops.
It is expected that by 1980 the target reliability may be achieved with
improvement in failure rates of components.

Shield weights for this power system are shown in Table 31.

Advantages of this power conversion system are the lower power
conversion system and radiator weights. Disadvantages are based on the
corrosive qualities of mercury, uncertainties connected with the possibility
of zero-gravity boiling and condensing, and lubrication and bearing problems.

The power conversion system is housed below the shadow shield, and

the radiator-condenser forms a cone around the PCS components subtending
the shadow shield (Figure 49). The reactor and power conversion systems

- 122 -

SD 67-621-4




D11eWaYDG WialsAg 97040 auUINUBRY AINDII I1030€3Y IBS[ONN

hl? durs 3y

]

sdutaeeg

e

dwo)
dxg

-
\
7

JOSUIPUO)

Anooqc
BN

XH uowwom

| i

Jojeypey
myzey

s e e e — e — —

J0qRUIITY

AV

2030%9Yy

c

>

OToL) supUey LINOISN/I03083Y JRITONYN

‘L¥ 2an3r g

sdoo]
uBpUNPIY

JO SATIOY uwoJdg

sdoo1
uepunpey

J0 9AT3OV O

- 123 -

SD 67-621-4



Table 30. Parametric Data for Reactor/Rankine PCS
(Based on 10 kwe System, Reference 4)

Item Characteristic
Reactor outlet temperature 1300 F
Turbine inlet temperature 1250 F
Radiator/condenser inlet temperature 622 F
Turbine efficiency 0.6
Mercury pump efficiency 0.36
Machine efficiency 0.48
Cycle efficiency (Ec) 0.084
Alternator efficiency 0.9
Power conditioning efficiency (Epc-) 0.83
Gross system efficiency (E) (Epc) 0. 07
Power source (reactor) 388 1b
Radiation shield 3215 1b
Primary loop 298 1b
PCS (2 active 5 kwe modules, 1 redundant) 1282 1b
Radiator 558 1b
Boom and cables 545 1b
Power conditioning system 1900 1b
Thermal shield 921 1b
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are separated from the mission module by an extension boom, designed to
attenuate radiation levels. This boom is retracted during launch operations
and is extended after reaching a designated orbit. For orbit insertion and
aerobraking, provisions must be made to retract the reactor. This will
involve reactor shutdown and later restart. Detailed analysis of these
operational requirements was beyond the scope of this particular study.

The mercury Rankine radiator-condenser is a hollow truncated cone
made of a material with high thermal conductivity characteristics, which
constitutes the set of radiating fins. The condensing and subcooling of the
mercury is accomplished in tubes brazed longitudinally to the inside of this
shell. The radiating outer surface of this shell is coated with a material of
high emissivity and low solar absorptivity. An armor strip provides
meteoroid puncture protection, located on the outside of the fin opposite the
tube.

Parametric data were compiled to determine the minimum weight
influenced by cone area, fin thickness, and number of tubes, corresponding
to a given cone angle and diameter. Optimization studies for this design
utilize aluminum-steel combinations, using rectangular tubes of Haynes-25
alloy. The study shows a specific weight of 1. 39 pounds per square foot for
a one-year nonpuncture probability of 0.97. Figure 50 shows the weight
increase to achieve a nonpuncture probability of 0.999, i.e., to a specific
weight of 1.55 pounds per square foot. The area utilized is 120 square feet
per 5-kWe module, resulting in a weight of 186 pounds of radiator per
module. '

For lifetimes greater than one year, nonpuncture probability is
achieved by adding redundant radiator loops, consisting of tubes, manifolds,
and armor. This weight increase amounts to 78 pounds per 5-kWe module
per year extension of lifetime.

The reactor with the PCS system is separated from the mission module
by a boom to accomplish radiation attenuation. The power transmission
cables leading to the power conditioning system are housed inside the boom.
Parametric weights of boom and transmission cables were shown in
Figures 43 and 44. *

The electrical power conditioning subsystem consists of the alternator
load control, d-c and a-c control and conditioning unit, load control, and the
bus and distribution system.

The parasitic load control assembly, parasitic load resistors, and
generator load control breakers are incorporated in the alternator load con-
trol systems. The d-c control system consists of a transformer and voltage
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regulator. The a-c control system incorporates high-voltage rectifiers,
square-wave inverters, sine wave inverters, and variable frequency start and
emergency inverters. Load control consists of switches, circuit breakers,
and relays.

Thermal Nuclear Reactor/Thermoelectric Power System

Thermoelectric power systems convert thermal energy directly to
electrical energy without rotating or moving parts. The reactor heat source
design considerations are the same as for dynamic systems.

Semiconductors are used for thermoelectric energy conversion. To
date, two types of semiconductors have been developed for this application,
based on lead telluride alloys and silicon-germanium alloys. The lead
telluride alloy semiconductor is currently limited to operate at temperatures
below 860 K, while the silicon-germanium alloy semiconductor operates most
efficiently around 1100 K. Due to temperature limitations in the nuclear
reactors, only lead telluride thermoelectric systems were considered in this
study.

The lead telluride thermoelectric materials have an efficiency up to
50 percent higher than the silicon-germanium materials. Converters using
these two thermoelectric materials in a cascaded arrangement are considered
in connection with isotopic heat sources, and will be attractive when higher
reactor temperatures can be achieved. Based on material improvements
forecast in recent studies, a 1000 K operating temperature for lead telluride
will be feasible in the next decade. A 20, 000 hour life is projected with a
0.999 reliability. A degradation of thermocouples of 5 percent per year is
expected. Overall system efficiency will be approximately 6.5 percent. A
block diagram of this power system is shown in Figure 51. Efficiencies,
temperatures, and component weights are given in Table 32. Shield weights
are shown in Table 33.

Radioisotope Power Subsystems

Radioisotope Power Sources

In radioisotope power sources, the kinetic energy of the particles
emitted by the decay process is converted into thermal energy. Heat must
be transferred from the fuel capsules to the power conversion system. This
heat transfer can be accomplished either by conduction, convection, or
radiation.
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Table 32. Parametric Data for Reactor/Thermoelectric System
(Based on 10 kwe Systems, Reference5)

Item Characteristic
Reactor outlet temperature 1340 F
Converter hot side inlet temperature 1300 F
Converter hot side outlet temperature 1100 F
Converter cold side inlet temperature 325 F

Converter hot side outlet temperature

(radiator inlet temperature) 525 F
Cycle efficiency 0. 065
Power conditioning efficiency 0.83
Gross system efficiency 0,054
Power source (reactor) 388 1b
Radiation shield 3500 1b
Primary loop | 153 1b
PCS 1457 1b
Radiator 1294 1b
Boom and cables 980 1b
Power conditioning system 861 1b
Heat shield 1581 1b
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The heat transfer and NaK flow design and technology for a compact
isotope heat source is similar to that of SNAP reactor cores. In addition to
the NaK loop, the source must also contain the reentry and emergency cooling
loop. The reentry and emergency cooling loop is required to recover the
isotope heat source following the mission in order to conserve a national
resource, This cooling loop could also be used when the subsystem is
retracted during an aerobraking maneuver, The source is composed of
tubes containing isotope fuel capsules, Concentric tubes around the source
tube provide passages for a two-pass NaK flow, The two-pass NaK system
is not necessary from the standpoint of heat transfer, but it does place the
NaK inlet and exit manifold at the same end, allowing the other end to be
opened and closed for launch pad loading of fuel capsules without breaching
the NaK system, The reentry coolant, in this case water, flows in the
interstices between the NaK tubes. Several alternative possibilities for the
NaK and water coolant passages are possible, If the heat exchanger is
designed with radial conduction paths, the reentry coolant passage could be
a jacket around the source, and the internal design would be simplified.

Another approach to the compact isotope heat source design is to have
rows of isotope capsules transferring thermal energy by radiation to NaK
tubes., The optimum heat source design will be a strong function of the size
and shape requirements resulting from the isotope power system integration
concept selected.

Shielding., The weight of the nuclear shield required to protect the
crew from the isotope source radiation is a major consideration in the
utilization of radioisotope heat sources.

The radiation from heat-producing isotopes can emanate directly
from the natural decay scheme of the radioactive nuclide, or it can result
from the interaction with other materials. Direct radiation is in the form
of gamma rays, alpha particles, beta particles, and neutrons, with each
radioisotope having a typical spectrum of each radiation form. The direct
radiation from many nuclides is primarily restricted to only one or two
forms, while in others, there are significant contributions from three or

more decay modes, The radiation that results from interactions with other
materials is usually from Bremsstrahlung and from the alpha neutron

reactions with light nuclei. The presence of materials that cause this
secondary radiation usually cannot be completely avoided since they are
present as fuel compounds, impurities, or fuel cladding.

Uranium is used for gamma shielding (density = 18. 8 gm/cc) although
materials such as tungsten, lead, mercury, and others may be used.
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Lithium hydride was chosen for the neutron shield (density = 0. 74 gm/cc).
The thicknesses considered in this study do not account for the effect of the
uranium on neutron attenuation. The effect of lithium on gamma attenuation
is neglected since this is a second-order effect on shield weights. Also, the
gamma ray dose buildup factor was neglected. Figure 52 shows shield
weight requirements for various residence times with allowable dosages of
20 rem per year and 10 rem per year. ‘

Heat Rejection. With mercury-Rankiﬁe power conversion systems, it
has been the practice to design the system at worst-case environmental
conditions, and to maintain constant electrical output by sacrificing efficiency
during intervals of lower sink temperature. Thermoelectric conversion
systems are more permissive toward cycle parameter variations and, con-
sequently, are designed on the basis of a hypothetical 0 R sink temperature.

Shutdown Heat Rejection Subsystems. During shutdown, isotope heat
will be removed by the secondary NaK loop consisting of the heat exchanger,
a high-temperature heat rejection radiator, a finned thermoelectric pump,
and an expansion compensator. Inaddition, a water boiloff heat rejection
loop will provide one hour reentry cooling of the source while the primary
radiator is inoperative. Heating water to approximately 1500 F at 1 to 10 psia
will remove approximately 1700 Btu per pound water.

Single-Phase Indirect Radiators. From the standpoint of radiator
analysis, the single-phase indirect radiator is probably the simplest type of
radiator. It is filled with fluid and usually operates in a secondary or ter-
tiary loop. Substantial temperature gradient exists over the radiator,
resulting in an effective radiating temperature well below the inlet temper-
ature (Figure 53a).

The design of this radiator is relatively free of system interaction
considerations, and may be separately optimized for vehicle integration.
As a zero-void system, it is also especially attractive for zero-gravity
applications. It was, therefore, selected as the type for use in the NASA/
SNAP 8 system during the period when the final application was unknown.
Disadvantages, when used in an indirect loop, include the requirement of
additional expansion compensators, circulation pumps, and pumping power.
Meteoroid puncture probability is determined only by tube, fin, and armor
thicknesses.

Condenser-Radiators. This radiator is applicable to Rankine cycle
systems. Condensation of the turbine exhaust takes place in the radiator
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Figure 52. Specific Shield Weight for Pu238 Isotope Power Systems
Versus Effective Separation Distance
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tubes at nearly constant temperature (Figure 53b). The effective radiating
temperature thus approaches the radiator inlet temperature. Relatively
large tubes and headers are required, however, to prevent excessive
vapor-phase pressure drop.

Use of a condenser-radiator completely eliminates any tertiary loop
and the additional complexity, weight, and losses associated therewith.
Therefore, a radiator system is used in this study with the Rankine cycle
systems.

The radiator area requirements for the different conversion systems
considered are shown in Figure 54, The variation in the Brayton cycle
requirements are due to variations in the design criteria. The upper curve
represents the area that results from the assumed operating conditions,
i.e., turbine inlet temperature of 1111 K (1540 F) and compressor inlet
temperature of 300 K (80 F). The area can be reduced by raising the
compressor outlet temperature; i. e., by minimizing radiator area at the
expense of efficiency.

Electrical Control. The power distribution concept is shown in
Figures 55and 56 forthe isotope dynamic systems. Figure 55 illustrates
the fundamental difference in delivered conditioned power and alternator
power in rating systems and comparing weights. Nuclear reactor system
conditioning equipment efficiencies can be taken as the same, for pre-
liminary estimates. The active and standby CRU's are interconnected to a
common bus so that only one can operate or be on the line at a given time.
The frequency of the system is maintained by controlling the shaft speed. A
constant load is kept on the alternator as the demand for useful power varies
by application of a parasitic load.

The alternator uses dc excitation to maintain line voltage under load.
The regulator is a three-phase, half-wave, silicon-controlled rectifier
which is activated by signal from a circuit that senses alternator line voltage.

Radioisotope/Brayton Cycle Power System

The Brayton cycle power generation system takes advantage of the fact
that the work of compression or expansion of a gas is directly proportional
to its initial absolute temperature. Thus, the expansion of a gas at high
temperature produces more work than that required for compression of the
same gas at lower temperature resulting in a generation of usable
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mechanical power. In this study, the turbine and compressor inlet tem-
peratures were assumed to be 1111 K (1540 F) and 300 K (80 F), respectively.

A flow schematic is shown in Figure 57, Preheated gas enters the
isotope heat source where it is heated to the turbine inlet temperature and
expanded producing mechanical power. The gas then flows through the
recuperator, where it is cooled by preheating the incoming gas stream.

The gas then transfers the cycle reject heat to an organic coolant (FC-75)in
the heat exchanger, where it is cooled tothe compressor inlet temperature.
The gas is compressed, preheated in the recuperator, and finally returned
into the heat source. A bleed stream from the compressor outlet provides
the CRU lubrication and cooling. From the heat exchanger, the FC-75 flows
through the heat rejection radiator and then completes its loop., Brayton
cycle systems exhibit high overall efficiencies and by the use of an inert

gas (single phase), reduce many of the problems of corrosion caused by other
working fluids.

Brayton Cycle. Maximum cycle temperature is limited by material
and design facets of the isotope source and rotating machinery. * The opti-
mum lower-cycle temperature for a given upper-cycle temperature is
largely a function of design criteria and vehicle constraints. If weight is the
prime factor, one optimum lower temperature exists; minimum radiator
area yields another optimum value (these two may be the same for missions
requiring heavy meteoroid protection); maximum cycle efficiency (minimum
isotope inventory) gives another value. Table 34 shows relative values for
radiator area, system weight, and cycle efficiency for typical systems with
constant peak temperature optimized to different criteria. As indicated the
Brayton cycle system will vary considerably in radiator area requirements,
depending upon the selection of an optimizing parameter. This effect was
shown in Figure 54 for the upper and lower range of area requirements for
this system. The upper curve represents the area that results from
operating conditions listed previously, i.e., the reference design used in
the study. The area can be reduced by raising the compressor inlet
temperature; i.e., by minimizing radiator area at the expense of efficiency.

Figure 58 shows the effect of compressor inlet temperature on radiator
area for the same component parameters. Figure 59 shows the effect of
regenerator effectiveness, machinery efficiency, and useful pressure ratio
on relative cycle efficiency with constant upper and lower cycle temperatures.

*Present isotope encapsulation material technology limits isotopes to ~ 1250 F as a heat source. It is expected

that this technology will be improved to permit 2000 F isotope heat sources for missions in the 1980 to
2000 period.
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Figure 60 shows peak cycle efficiency as a function of compressor inlet
temperature with the constant conditions: 80 percent compressor efficiency,
80 percent regenerator effectiveness, 90 percent turbine efficiency, and

10 percent pressure loss ratio.

Table 34. Effect of Brayton System Optimization Criteria

Optimizing Radiator System Cycle
Parameter Area Weight Efficiency
Area .0 1.30 0. 30
Weight .31 1.00 0.77
Efficiency 1.36 1.22 1.00

Vehicle and system configuration, in conjunction with the specific
mission and type of system, imposes constraints on system performance
design. There is nothing inherent in an isotope system which requires
orientation of the complete system, however, the changing environment of
space must be considered.

Radioisotope /Rankine Cycle Power System

The Rankine cycle for space application is similar to that used in
steam turbine power systems and is a two-phase system. A liquid is
evaporated and superheated in a boiler., The vapor is then expanded through
a turbine which drives an electrical generator. The working fluid is then
condensed and subcooled by a radiator-condenser with the liquid then pumped
back to the boiler by means of a boiler feed pump. Among working fluids
that might be used in space Rankine power cycles are potassium, mercury,
Dowtherm A, and water. The principal advantage of the Rankine cycle is the
high cycle efficiency and the isothermal heat rejection that allows minimum
radiator area for a given source temperature. Principal disadvantages are

the inherent corrosion and erosion characteristics of the applicable working
fluids.

A superheat mercury Rankine cycle is shown in Figure 61. Liquid
mercury enters the boiler through a flow regulator. In the boiler, the
mercury is preheated, boiled, and superheated. The mercury vapor is then
expanded through an impulse turbine, providing power to drive the permanent
magnet alternator and the mercury centrifugal pump, all mounted on a
common shaft-CRU. The turbine exhaust vapor flows through the alternator
housing for cooling purposes and then enters the radiator-condenser where
the mercury is condensed and subcooled. The subcooled condensate then
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mixes with a higher temperature bearing effluent stream and enters the jet-
boosted centrifugal pump. A portion of the high-pressure pump discharge
flows through the CRU, providing lubrication and cooling. Provision for
dissipation of the excess isotope power and total isotope power dissipation in
event of shutdown is included in the form of a separate liquid coolant loop and
high-temperature radiator.

Since the weights of the organic (e.g., Dowtherm A) Rankine system
are comparable to the mercury Rankine system, it was concluded that only
the mercury Rankine system be included in the Weight Summary and that the
mercury Rankine be considered as typical of Rankine conversion systems.
The primary advantage of using mercury as a working fluid over Dowtherm A
is that this fluid results in less radiator area requirement for the system due
to higher heat rejection temperatures. Another major advantage is that this
fluid has been used in the SNAP nuclear reactor development program and its
characteristics are fully understood with a vast background of experience
available, i.e., design technology directly applicable to the power conversion
system of interest here.

Potassium and water were considered in the weight analysis but did not
show any advantage in overall weight. A major advantage of potassium is
in savings in radiator area requirement, which may be a decisive parameter
for missions into the asteroid belt.

Performance limitations result from considerations of structural
strength, corrosion, pump cavitation, condensing stability, and heat-
rejection capability. The design strength limit is based on creep, fatigue,
and stress applicable to the hardware. As temperature increases, corrosion
becomes more pronounced. Figure 62 illustrates some of the constraints
considered in projecting conceptual design performance to the 1980-2000
time period.

Turbine Efficiency. Experience with the design of small mercury
turbines indicates that over the power range of interest to this study, the
turbine efficiency will vary with shaft power, but that the effect on overall
weight should be small. The SNAP 2, CRU-V turbine, for example, is a
two-stage subsonic-transonic design running at 36, 000 rpm at pressures
of 115 psia inlet and 9 psia outlet. Its shaft power is 5, 610 watts and its
efficiency is 54.3 percent. This data, combined with analysis of higher
power output designs, has lead to the curve of turbine efficiency versus
shaft power (Figure 63). Reference design is at a turbine efficiency of
55 percent with an assumed increase of 3 percent added for system improve-
ment (Table 35).

Overall Efficiency. It is apparent from Figure 64 that significant
gains are available if the pump can be run at very low inlet pressures.
Almost 1 percent improvement (e.g., 0.75) can be made on a 4 kWe system,
for example, if the turbine back pressure is lowered from 4.5 to 3.5 psia.
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Another possibility is an increase in boiling temperature. An increase from
1050 to 1150 F shows an improvement of 1.75 percent. If refractory or
coextruded refractory boiler tubes were developed, it would be reasonable
to consider boiling temperatures of 1200 to 1300 F. Figure 65 shows the
effect of mercury boiling temperature on cycle efficiency. The reference
design was at 1050 F boiling temperature; for the weight summaries this
temperature was increased to 1150 F (Table 35).

Radioisotope /Thermoelectric Power Systems

Several thermoelectric power conversion systems are currently under
development by the Atomic Energy Commission which can be utilized with
radioisotope heat sources for the production of electricity. These programs
are based on the utilization of SiGe or the family of PbTe materials for
direct conversion of thermal energy into electrical energy. These materials
exhibit different mechanical, thermal, and electrical characteristics. PbTe
devices, because of their higher materials efficiency, exhibit slightly higher
overall conversion efficiencies. A comparison of system weights (based on
present designs) is shown in Figures 66 and 67.

Since the performance of either type of device is dependent on the
temperature difference between the thermoelectric hot junction and cold
junctions (Carnot efficiency), overall system efficiency and radiator area
tradeoffs can be accomplished over a broad range without incurring a system
weight penalty. Efficiencies as a function of these temperature differences
are shown in Figures 68 and 69. In the weight summaries, it was assumed
that improvements in temperature would be achieved by the 1980-2000 period,
and that overall efficiency would be improved as shown; e.g., a 100 degree
increase in hot junction temperature for the SiGe system results in 1.3
percent increase in overall efficiency.

SiGe devices are currently under development by RCA's Thermo-
electric Products Engineering Division. Two separate development efforts
are proceeding: one based on the direct radiating approach similar to the
SNAP 10A converter design, and one based on a compact converter arrange-
ment utilizing two liquid metal coolant loops. In the compact converter
approach, one loop supplies high-temperature liquid metal to the thermo-
electric hot junction and the second loop removes waste heat from the cold
junction at a reduced temperature,

PbTe devices are under development by several companies, including
the 3M Company's Electrical Products Division, Westinghouse Astronuclear
Laboratory, and Martin Marietta Nuclear Division. These development
efforts are oriented toward a compact converter design. The Westinghouse
effort is specifically oriented toward a compact converter design which
utilizes two liquid metal coolant loops.
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Figure 70. Compact Thermoelectric System Schematic
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The compact thermoelectric converter consists of a closely packed
array of SiGe or PbTe thermoelectric elements confined between a heat
source and a heat sink. The heat source could be a hot NaK -channel or
radiation directly from isotope fuel capsules. A coolant loop removes
waste heat from the converter and transports it to a space radiator. The
thermoelectric elements are electrically connected in series and in parallel
to provide the desired voltage and power. Interconnections between the
series modules are used to provide the high reliability against open circuit
fajilure. The isotope thermoelectric power systems considered in this study
are based on the flow schematic shown in Figure 70. An isotope source,
fueled with Pu?38 is used to heat NaK in the primary loop. The NaK is
circulated by an electromagnetic pump and maintains the hot junction tem-
perature of the thermoelectric converter. Thermal energy passes through
the thermoelectric elements in the compact converter to a second NaK loop
which rejects waste heat by means of a space radiator. Isotope thermo-
electric systems may also be designed with direct radiating power converters,
The weights and performance shown for compact thermoelectric converters
are also representative for direct radiating power systems.

SiGe converter operation at 1500 F and PbTe operation at 1100 F are
believed to be attainable with operational systems during the 1975-1985
periods. Converter state of the art for either SiGe or PbTe is estimated to
be approximately the same at the preceding temperatures, i.e., compact

thermoelectric design state of the art.

Cascaded Thermoelectric System. The two thermoelectric systems
discussed are based on the use of single converter units., The different
thermoelectric materials have different optimum operating temperatures
and the use of both the Pb Te and SiGe converters in the same system yields
a higher system efficiency and, hence, lower fuel inventory, lower system
weight, and lower radiator area requirement. Coupling between converters
is accomplished by a pumped liquid metal loop, similar to the normal
system loop previously discussed. The use of a cascaded system is depen-
dent on the development of both compact converter designs. The system
flow schematic is shown in Figure 71. Assuming continuation of current
AEC programs, an application in the 1970's is within reason. Additional
information can be found in many sources, including Reference 4,

Figure 72 shows the variation of radiator area required and efficiency as
a function of Carnot efficiency.

The Weight Summary data (Table 23) are based on the cascaded imp
compact converters assuming a 23 percent improvement in weight based on
higher temperatures, i.e., an increase in the hot junction temperature of
200 F. This assumption is based on the premise that 2000 F isotope heat
sources will be available. No change in the cold junction temperature was
included, since this affects radiator area requirements. The data shown in
Table 23 was obtained by considering present conceptual system weights
proposed in the studies for 1975 to 1985 flyby missions and allowing for the
anticipated system performance improvements.
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Figure 71. Cascaded Thermoelectric System Schematic
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Single element thermoelectrics were not shown in the Weight Summary
since they result in additional weight, i.e., approximately 1.28 times the
weight of cascaded systems. For example, the isotope thermoelectric
cascaded system shown in Table 23 totals 4920 pounds for an electrical
output of 10 kilowatts (0.49 lb/watt). Reference 7 shows a total weight of
2450 pounds for a 3-kWe output single SiGe element design. Using the
23 percent improvement in performance, the following results:

2450 1b 1
3000 watt 1.28

(1 -0.23) = 0.49 Ib/watt

This value will differ from Figure 66 since new study has shown
reduced isotope fuel block weight by allowing helium venting and it is
reasonable to project these weight savings. Weights shown in Figures 66
and 67 apply only to existing hardware design, which does not allow for
helium venting.

The isotope thermoelectrics were selected for comparison to solar
photovoltaic and chemical energy systems for the planetary excursion module
descent stage (Figures 37 through 40). A summary of weight savings, as
compared to longer missions, is shown in Table 36. These savings are not
excessive since redundancy in the thermoelectrics was figured at 5 percent
per year rather than by additional converters because of the inherent
reliability resulting form series-parallel arrangements of the thermoelectrics.

Table 36. Weight Reduction for Isotope Thermoelectric Power
Systems at Missions Less Than One Year

Component Weight Savings
Converter 5 percent (no redundancy)
Electric and Control 50 percent (no redundancy)
Radiator 33 percent (less meteoroid protection)
Auxiliary radiator 35 percent (less meteoroid protection)
Shield 31 percent (increased allowance to
20 rem/yr) '
Total overall savings 16.5 percent (system weight)
Note: For the nuclear isotope systems only the thermoelectric system
was shown for use with the planetary excursion module descent
stage (Figures 37 through 40).
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Weight Scaling Assumptions and Methods Applicable to Isotope Systems

The shield weights are based on a spacecraft concept which
permits the source location separate from the mission module (assuming a
recoverable source). Isotope shield weights are a function of effective
separation distance were shown in Figure 52.

The assumptions used to determine the major component and sub-
system weights are:

1.

Levels of redundancy required to meet the mission reliability

goals. All system configurations were assumed to require
one active PCS loop plus two redundant loops as a minimum to
produce the desired electrical power.

Each redundant PCS loop is inactive until required to take over
the load-sharing duties of an active loop. An alternative approach
is to assume two active PCS loops plus several redundant loops.
This criterion would preclude shutting down the entire dynamic
power system in event of PCS loop failure, This latter approach
results in some weight increase. For purposes of this study, it
was believed that only one active loop should be considered. A
summary of the redundancy criterion used in this study is
presented in Table 37. Table 37 differs from Figure 48 because
isotope systems are assumed to be most applicable at low power
demands, which will allow satisfying total power by one active
power conversion system., This assumption does not apply to the
higher power output of nuclear reactor systems,

The meteoroid armor protection required to meet the specified ''0"
puncture probabilities. In the interest of evaluating each system
on a common basis, a weight penalty for radiators was assessed
per square foot, The radiator weights used in the study are
summarized in Table 38 . These weights were obtained by
providing sufficient armor for P(0) = 0. 999 (one year) based on
reference weights for MORL systems and adding one redundant
radiator loop per year of additional operation. '

The Rankine cycle system weights are based primarily on weight data
obtained from the Mercury Rankine Program (MRP), including temperature,
pressure, volume, geometry, etc. considerations for each component. The
Brayton cycle system weights are based primarily on the studies and pro-
grams conducted at AiResearch and TRW, These data were generated by
Atomics International and applied within mission constraints of the manned
Mars flyby mission (References 4 and 8 ), Beginning with established
design for 1975-1985 manned planetary flyby missions for range 2 kwe to
8 kWe, it was possible to estimate improvements and show final weights based

- 165 -
SD 67-621-4



Table 37.

(Used in Weight Summary)

Redundancy of Isotope Dynamic Power Conversion Systems

Mission Duration Number of Power Conversion Systems¥*
(years) Active Redundant Total No.
1 1 2 3
2 1 3 4
3 1 4 5
4 1 5 6
5 1 6 =

*Based on the assumption that rotating machinery will be designed to

achieve a minimum of one-year life.

Table 38.

Radiator Weights (lbs/ft®) Used in the Weight Summary

For Isotope and Nuclear Reactor Power Systems¥*

NaK and
Auxiliary FC-75 - Radiator-Condenser
NaK - Brayton; Rankine; Mission
All Systems Dowtherm A Thermoelectric Duration
(Ibs /£t2) (1bs/£t2) (1bs/£t2) (year)

6.2 1. 06 1,61 1

9.8 1.46 2.56 2

13.4 1. 86 3.51 3

17.0 2,26 4,46 4

20.6 2,66 5.41 5

Notes: *Total weight is a function of fluid tube vulnerable area i.e.,
power level. These weights are to be taken as average
values most applicable to the power level of isotope systems.
See Figure 56 for variations,

Radiator weights were based on:
1. Meteoroid thickness to give P(0) = 0,999 (one year-
based on reference weights for MORL systems)

2. One redundant loop added per year starting with the
second year
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on these estimates. A summary of the assumed improvements in system
performance and the relationship to overall weight reduction as reflected in
the weight summary is shown in Table 35.

The following discussion describes the methods used in the Atomics
International study to determine the weights of key components or sub-
systems in each cycle.

Boiler-Heat Exchanger., The Rankine cycle boiler weights were cal-
culated from the sizes resulting from the Rankine cycle analysis. The
Brayton cycle heat exchanger weights were obtained by adjusting the refer-
enced heat exchanger weights (as shown in Table 23) according to power level,
fluid flow, and heat transfer capabilities.

CRU. The CRU weights were calculated by adjusting the referenced
CRU weights according to piping sizes, turbine diameters and stages, and
alternator sizes.

Regenerator. The regenerator is required only in the organic and
Brayton systems. It is shown inthe schematic of the Rankine Mercury
system (Figure 61) primarily as a heat exchanger, providing a method to
cool the alternator. Its weight was obtained by ratioing the flow rate and AT
between the PCS working fluid at the turbine exhaust and the boiler inlet for

each cycle to those for the referenced regenerator weights,
|

Inventory. The Rankine cycle working fluid inventory is based on the
steady-state operating condition, and twice this quantity is required for each
module for restart capability. The inventory weight is dependent on:

1. Quantity and size of the boiler tubes

2. Length and size of piping to and from the boiler

3. Size of liquid manifolds in the radiator condenser (R-C)

4. Quantity and condensing height of the R-C tubes

These values were ratioed to those for the Mercury Rankine Program
steady-state weights to obtain the inventory weight for each Rankine cycle
fluid. The Brayton cycle inventory weight was adjusted according to volume.

Regulator Tank (Rankine Cycle). The size and weight of the regulator
tank are dependent on the working fluid volume and the anticipated fluctua-
tions in system performance, along with the working pressure. The weight

was assumed uniform for all systems since the tank volume is essentially
constant between fluids. For a reference design at 4,0 kwe output, the total
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start system components are assumed to weigh 80 pounds and to occupy
1.6 cubic feet. Fluid inventory estimates vary from 2.5 pounds (Dowtherm A)
to 30 pounds (Hg) for steady state operation.

Injection Tank (Working Fluid). The injection tank weights (part of
start system) were obtained by adjusting the MRP weight by ratioing the
PCS working fluid volume and injection pressure.

Heat Rejection System. The heat rejection system is a radiator
condenser or radiator sized physically on the heat rejection requirements
of the system. Materials were selected on a compromise basis between the
thermal and structural requirements to minimize weight., The system is
composed of the items discussed in the following paragraphs.

Tubes and Meteoroid Armor. The quantity of tubes was determined
by the thermal requirements. The tube material was selected considering
(1) compatibility with the PCS working fluid, (2) structural capability, and
(3) meteoroid armor effectiveness. The tube thickness was held constant
at 0.025 inch, which was considered the minimum for the strength and
fabrication requirements. The tube lengths are a function of the required
area.

Fin. The fin area and thickness are directly related to the thermal
requirements. Material selection was based on conductivity, density, and
strength, A shared fin concept was used in which one tube from each
module (active—passive) shares one common fin, i.e., area is not duplicated
for inactive module.

Manifold. The length of the vapor and liquid (not in the Brayton cycle)
manifolds are a function of the R-C or radiator width, The diameter is
dependent on the allowable pressure drop in the system. Thickness is
determined from structural and meteoroid armor requirements. The
material is the same as for the tubes.

Structure. Additional structure to that already enumerated is required
to satisfy structural requirements. This structure includes frames for
structural stability, rings for attachment, and brackets and doublers for
component attachments,

Deployment, No radiator deployment was considered. It was assumed
that radiator area availability is sufficient to satisfy requirements. The
deployable R-C's or radiators require twice the meteoroid armor shown since
both sides are considered vulnerable to meteoroid exposure without the aid
of any structure to act as a bumper for meteoroid bombardment, However,
deployable R-C/radiators radiate from both sides, thus, requiring only
one-half of the conventional R~C/radiator required area.
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Miscellaneous. These weights include all miscellaneous items not
previously covered, such as brace, mechanical fasteners, emissivity coatings,
joints, clips, intercostals, etc. This weight was estimated from the
referenced R-C/radiator designs and apportioned according to area.

Electrical and Control, The weights used are based on the power
conditioning schematic (e.g., Figures 57, 61, and 70) and on weights of
similar available equipment where possible. When typical weights were not
available, such as was the case for excitation control, an estimate was made
based on the typical material that would be found in such an item.

Source. The source weight was obtained as a function of thermal
power required based on typical isotope fuel capsule designs using Pul38
microspheres, :

Shield. A comparison of shield weights for the isotope systems reveals
small difference. The largest influences are the source location in the
vehicle and flight configurations, Shield weights were calculated using typical
crew duty cycles and distances from the source as found in Reference 1.

The shield configuration was determined by its location and line-of-sight
geometry and the boiler-heat exchanger configuration.

Further description of these components and the parametric curves
that influence their weights are presented in References 4 and 6.

Solar/Dynamic Power System

The solar dynamic power system considered included both the Rankine
and Brayton conversion cycles. Both of these cycles were described in the
Radioisotope Power System section of this report, and since the flow sche-
matics are similar, they will not be repeated here. Weights have been deter-
mined for solar-powered systems assuming the same conversion equipment
as for the radioisotopes. Solar concentrator-absorber weights are used to
replace those of the isotope, shield, reentry boiloff, and isotope auxiliary
radiator. Characteristics of the conversion cycle are assumed to be the same,
thereby, resulting in identical conversion component weights and radiator
area requirements. Meteoroid protection of the radiator, cycle improvement,
and redundancy philosophy were considered to be identical.

The solar concentrator-absorber combination was sized for constant
efficiency, i.e.,

3

i1

M 0.85 (assumed constant)

concentrator

Nabsorber 0.70 (assumed constant)
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Figure 73 shows area utilization used in the weight determination.
Specific weight variations for different concentrator designs are shown in
Figure 74. For this study, concentrator weights were based on paraboloid
mirrors of either the petal construction or the inflatible construction. A
specific value of 0.4 pound per square foot was used, which includes a
20-percent penalty for orientation. A comparison of orientation requirements
for various systems is shown in Table 39,

Figure 75 shows the combined collector-absorber efficiency as a func-
tion of absorber temperature for six collector concepts based on experimental
data assuming an ideal cavity absorber. Four concentrator types (inflatable,
inflatable rigidized, petal, and Fresnel) fall within the same range of concen-
trating ability but with widely varying efficiencies. The failure to approach
the near-theoretical value of the one-piece design can be attributed to
material and fabrication problems., Future developmental efforts should
narrow this gap. Future collector capabilities may be summarized as follows:

Table 39. Allowable Misorientation for 10-Percent Power Reduction

System Misorientation
Turbogenerator system (1170 F) 1 deg - 8 min.
Thermionic generator (2390 F) 16 min.
(4900 F) 5 min.
| Photovoltaic

(a) Flat panel (50 F) 26 deg

(b) 2 to 1 concentrator (85 F) 6-1_/2 to 15 deg
1. Reflectivity (silver or aluminum freshly deposited) ranges from

90 to 93 percent on metallic surfaces and from 85 to 87 percent
on mylar substrates. Silicon monoxide coatings will probably
retain this reflectivity for ground applications, however, little

is known of the long-time integrity of the reflectivity in the space
environment

2. Concentration ratios (projected area of concentrator to optimum
area with cavity opening) vary from approximately 2000:1 for
metallic types to 800:1 for inflatable units

3. Specific weights (reflecting surface only) are 0.2 to 0.5 pounds
per square foot for metallic and 0.15 pounds per square foot for
inflatable types. Based on current state of art, concentrators can
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be considered of the petal, inflatable-rigidized, and Fresnel types
for collector diameters up to 50 feet. The inflatable-rigidized
type is preferred because of its lower prelaunch storage volumes
and minimum problems of ground handling and launch structural
stresses.

Photovoltaic Power System

The use of solar cell systems must be considered as either a primary
power source or a back-up source for the majority of the missions considered
during this study. These systems have been the primary power source on the
majority of the unmanned systems launched to date which has resulted in a
backlog of information regarding their operational use. There are, however,
recognized problems associated with the large arrays which would be required
for the systems considered in this study, e.g., deployment, retraction,
orientation, structural design, etc,

A solar cell system based on projecting the present state-of-the-art
hardware was used for the solar cell system basepoint weights (References 1
and 8). The solar array consists of oriented panels constructed of replaceable
electrically interconnected modules of solar cells. Each solar cell module is
made up of N/P, 1 ohm cm, 11 percent AMO, 2 x 2 cm silicon cells formed from
parallel groups of cells having a fixed number of series cells. Each module
weight is based on using beryllium substrates and aluminum backup structure.
The backside of the substrate has a thermal control coating with an emissivity
of 0. 82 or greater and an absorptivity no greater than 0.20. These modules
are connectedin matrix to give the required array output power and voltages.

Power Transfer

Sun sensor signals and power will be transferred from rotating solar
cell panels to a stationary control system through a slip ring assembly on
the drive shaft. Electrical leads are integral with each slip ring with the
shields for the signal wires allowed to float at the slip rings.

Array Deployment

The deployment scheme is based on a lazy tong mechanism consisting
of a number of connecting links. The erection mechanism is considered as
the heart of the deployment sequence, and as a result, uses ultimate sim-
plicity for maximum reliability. It is a simple slider-crank device that
rotates under the action of a single liquid dampened spring actuator,
extending and angularly positioning the array in one single continuous cycle.
The mechanism consists of a frame, an adjustable liquid dampened spring
actuator, a bell-crank, a slider, and a support assembly. The actuator is
used to control the extension rate and complement the array arm forces
when they are approaching their minimum output. Rate control adjustment
is accomplished by throttling the fluid flow with a needle valve located within
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the piston rod. A compression spring surrounding the actuator, sided by the
mechanical advantage of the mechanism is used to complement the forces
built into the arm assembly, Table 40 shows typical structural con-
figurations that may be considered.

A direct drive assembly is used where the meter shaft is coupled
directly to the solar array axle through a simple spring and damper mech-
anism. It is designed to transmit constant torque to the solar array at a
rate of rotation maintained by a controller which senses the sun and modifies
the rate of rotation to correct for such factors as orbital eccentricity,
programming, errors, etc. The basepoint drive assembly is based on the
experience and development test parameters generated and utilized during
the SNAP reactor control drum drive development program.

Design Considerations

There are three possible ways of designing a solar cell system for a
particular mission. The first method involves utilizing a developed system
or a system in development, exhibiting comparative performance charac-
teristics requiring only minor sizing modifications. The second approach
uses a proven system as a submodule in a building block process for higher
power requirements. The third method is to design a completely new system
based on advanced technology.

Table 41 relates the present and future solar cell panel trends for
large area panels. Of the arrays nowbeing developed, Boeing is developing
the largest array of 4590 square feet. Both TRW and RCS are studing panel
sizes in the area of 1000 square feet, and Hughes is developing a flexible
roll-up array using dendritic cells for areas of approximately 500 square feet.
It appears that modification of existing hardware will not be possible, however,
modification of the Boeing advanced design may prove feasible. The other
solar cell arrays may be considered as submodules for system sizing.

If a new panel is completely redesigned for optimum mission require-
ments, solar cells other than that of the N/P; 12 mil, 1 ohm-cm silicon,
single crystal cell may be considered. Major emphasis was placed on the
utilization of large area thin film cells, resulting in a large reduction in
panel weight. The lighter-weight panel stems from the fact that only very
thin layers of silicon (100 microns) are required to convert solar photon
energy to electrical power. Most of the remaining 10 to 20 mils of material
used in conventional single crystal cells serves as structural support. At
present, thin film cells of Cadmium Sulfide (CdS) and Cadmium Telluride
(CdTe) are receiving major attention, These materials have diffusion lengths
considerably less than that of silicon, The processing of high efficient
arrays is quite expensive and probably will require several years to perfect.
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Table 41. Solar Cell Performance Scaling Factor

Present ' 1975 1980-2000
Power ' Power Power
Solar Cell Output Output Output
Thickness | Efficiency [Scaling Efficiency | Scaling Efficiency | Scaling
(mils) (percent) |Factor | (percent) | Factor (percent) | Factor
12 '10.5 Lo 11.7 L1 13.0 1.235
8 9.5 0.905 11.0 1.045 12,0 1.145
4 7.5-8.5 10.715-81]9.5-10.5 {0.904-1.0 11.7 L1*
*Used in Weight Summary

Table 42 relates the solar panel specific weights for both the present and
future single crystal silicon cells. These weights do not include any environ-
mental degradation factors, and make use of the lightest beryllium substrates,
For this portion of the study, solar cell panel weights were based on the values
shown in Table 42,

Temperature is a primary variable in the efficiency of operation of a
solar array. The steady-state thermal balance equation for a unit area solar
array operating in space yields the curve shown in Figure 76. This was
obtained by selecting values for the parameters from Reference 9 shown in
Table 43,

Radiation Damage

Several silicon cell modifications have been investigated for reducing
cell damage due to radiation exposure. One of the most significant changes has
been the use of a 10 ohm-cm base resistivity cell in place of the conventional
base resistivity of 1 ohm-cm. A factor of 2to3in resistance to electron dam -
age has been realized, The main disadvantage to this approach, however, is
that the 10 ohm-cm cell is inherently a lower efficient cell, exhibiting a lower
output voltage.

Another type of cell, the drift field cell, has been given considerable
attention. In this cell, a drift field is added to a conventional cell where the
base region contains an impurity gradient to provide an accelerating field for
minority carriers towards the junction. Improvements in radiation degredation
of a factor of 2 to 5 may be achieved, although these results are not yet final.
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Table 43. Solar Array Scaling Factor

Present Anticipated By
Solar Cells Parameter Consideration 1980-2000
Area utilization factor 0.85 0.90
Degradation factor 25 percent 25 percent
N/P silicon solar cells 10,5 AMO: 12 mils| 12. 0 AMO: 8 mils
Absorptivity: 0,83 (solar cell)| 0. 25 (inactive) Same
Emissivity: 0, 835 (solar cell) | 0, 85 (inactive) Same
Specific heat capacity 0.250 Btu/ftZ °F 0.151 Btu .
: 2— (8 ml].S)
ft— °F
0,10
_Z_Sﬁ (4 mils)
ft— °F

The most recent result in the reduction of radiation damage to solar
cells has been the use of lithium as the n-type dopant in a P/N silicon cell.
It has been found that with a lithium doped P/N cell, the output of the cell in
a radiation environment is much higher than that of the best N/P cell. Lithium
is quite mobile in silicon at room temperature. When radiation causes a
vacancy, lithium can diffuse to the vacancy, look into the substitutional site,
and eliminate it as a recombination center. The major problem with this
type cell, at present, is the shelf life. It has not yet been determined how
long the lithium will stay in the silicon.

To determine the degradation of panel output power as to a radiation
environment, certain factors must be considered. There is no ideal way to
present the data defining radiation damage to solar cells, partly because there
are so many measurable parameters which are sensitive to radiation, e.g.,
efficiency of energy conversion, maximum power point, short circuit current,
open circuit voltage, minority-carrier-diffusion length, spectral response,
junction capacitance, dark current, and curve factor. In addition, damage is
different for the various types of cells and cover slides. It can be seen,
therefore, that certain limitations had to be set.

The following assumptions were used:

1. Cell:

a. Type - N/P Silicon
b. Resistivity - 1 Ohm Cm
c. Thickness - 12 Mil

2. Cover Slide

a. Type - Quartz
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Power Degradation

Figure 77 depicts the degradation to the maximum power output of bare
1 ohm cm resistivity N/P cells due to varying proton fluxes at increasing
energies. As can be seen from the curves, the cell is most sensitive to iow
energy protons, For the missions considered in this study, the proton flux
from solar flares will be the predominate factor for system sizing.

Radiation Shielding

Figures 78 and 79 relate the quartz slide thickness required to shield
proton fluxes below a required energy range (mev). For instance, in order
to shield for all proton flux below 10 mev, a quartz thickness of approximately
24 mils is required. The other ordinate depicts the increase in panel
weight per square foot of panel size due to the use of quartz shielding. If
10 mev is the design shielding line, an increase in panel weight of 0. 275 pound
per square foot is required. However, for this study, it was assumed that
radiation-hardened cells would be available, and that no allowance would be
made for radiation shielding.

The curves of Figures 77 through 79 were included to show that present
solar photovoltaic power systems suffer considerable degradation in power
output due to solar proton radiation effects. An optimum cover slide thickness
exists for each cell design and anticipated radiation level. However, it is
beyond the scope of this power systems study to define the space environments
accurately enough to be of use, *

It is reasonable to assume that improvements will permit radiation
resistant cells, It may be that a differential between 1980 and say 1990 should
be made with some radiation shielding allowed. However, this was not part
of the study. In figure 78 the lines labeled 3, 6, 12 and 20 mils are perpen-
dicular to a constant 1b/ft? since a given thickness will shield out energy levels
independent of total flux quantity considering the same energy distribution,

Typical System

A functional schematic of a solar cell system for this application is
shown in Figure 80. Two isolated cell panels are connected to the main dis-
tributing dc bus through motor switches, Unregulated panel power is then
distributed to the secondary battery subsystem, unregulated and regulated
load buses. Since the output of the solar panels has a wide voltage swing,
additional voltage regulation must be imposed to satisfy most dc subsystem
load requirements.

*
Only a nominal degradation allowance of 5 percent per year in power output was assumed (Table 44),
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During most of the mission, primary power is supplied by the solar cell
panels, and the secondary batters are ona controlled charge cycle. The output
of the array will maintain a 24 to 32 volt dc to the unregulated bus. To meet
the requirement of the regulated loads, the panel voltage is regulated by a non-
dissipative d-c voltage regulator to within 27.5 % 2.5 volts. During this
period, the unregulated panel bus also furnishes input power to the battery
charging and control system. This system furnishes a controlled charge to
the battery and provides control for applying the battery output to or removing
it from the unregulated bus during periods of peak loading, shadow eclipse,
and eclipse to light cycles. A weight allowance for the latter peak loads and
occultation effects is not included in the Weight Summary data (Table 24 and
Figures 32 to 36) since they are mission dependent, Methodology for accom-
modating these conditions is presented in the Ground Rules section.

Weight Scaling

Solar cell array weights are based on data shown in Table 42 which
provides the component breakdown. A 4-mil cell was assumed with improve-
ments as shown in Table 41, The resulting improvements are as given in
Table 43; i.e., a 4-mil cell with 11,7 percent efficiency results in 1.1 times
the power output of the 12 mil cell at 10.5 percent air mass zero (AMO).
Table 44 provides a power output summary for different solar distances and
associated temperatures.

Fuel Cells

Many types of fuel cells are possible. The present stages of develop-
ment range from theoretical systems, through demonstration models, to
practical systems. The fuel cell electrochemical system which was evalu-
ated and analyzed for this study is hydrogen-oxygen, with alkaline electrolyte
and passive or inert separation material. It is clearly the most advantageous
system for general spacecraft use since hydrogen/oxygen is very nearly the
most energetic of all electrochemical systems and its chemical product is a
continuous stream of fresh drinking water. Although several electrochemical
systems can potentially provide more electrical energy per unit weight of
reactants, disadvantages have limited the extent of research with such systems.
A typical example is the hydrogen-fluorine system which has potentiality far
greater electric energy output on a weight basis; however, its chemical
product is hydrogen fluoride, a hazardous chemical requiring special handling
procedures.

Reference System

The Allis-Chalmers 200 watt and 2. 0 kilowatt fuel cells represent the
second generation Bacon-type (or modified Bacon-type) porous electrode-
alkaline electrolyte-cryogenic hydrogen and oxygen fuel cell. These fuel cells
are expected to be fully qualified for general spacecraft use before 1970,
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Table 44. Power Output Summary

Panel
‘ Panel Power Qutput Watts/ft2
Equilibrium Present 1980 - 2000
A.U. Temperature (12 Mils) T
(°F) Watts/ ft2 8 Mils 4 Mils*

0.70 209 14,1 16.2 15,5
1.0 96 9.7 11.1 10.65

|

| 1.2 46 7.5 8.6 8.22
1.5 -10 5.2 5.95 5.72
1.65 -33 4.2 4,81 4,61
2.2 -84 3.0 3,44 3.3

*Used in Weight Summary

Redundancy:
Meteoroids; <1.8 AU: no allowance
>1.8 AU; 100 percent replaceable panel

Radiation Degradation; 5 percent total degradation per year
based on:

a. 1.5 percent/year reliabiliiy allowance

b. 5 percent/year having been used in previous studies
and which may be conservative for lithium doped cells

Power Conditioning; 100 percent redundancy for one year
missions and 5 percent/year increase for mission >1 year.

Since power ratings considered in this study are in the 1 to 20 kilowatt range,
(PEM), the 2. O kilowatt cell is more applicable, and is selected as representa-
tive of the best state-of-the-art system for the 1970 period. It is expectedthat
modifications and improvements of this type fuel cell will represent the best
state-of-art system in the post-1980 period. Therefore, estimated improve-
ments resulting in lighter cells, accessories, and fuel tanks are based on this
second-generation system. :

Interrelated subsystems comprise the Allis-Chalmers 2. 0-kilowatt fuel
cell power plant (FCP):

1. Fuel cell stack (FCS)

2. Reactant conditioning and control subsystem (RCCS)
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3. Thermal conditioning and control subsystem (TCCS)
4. Moisture removal subsystem (MRS)

5. Water recovery subsystem (WRS)

6. Electrical monitoring and control subsystem (EMCS)
7. Instrumentation

8. Canister and support

Operation and Construction of Basic Cell

In any fuel cell system, the power producing element is the individual
cell. The fuel cell is a static energy converter which produces dc electrical
energy, with water and heat as by-products, by the electrochemical com-

bination of hydrogen and oxygen. The simplified fuel cell reactions are as
follows:

Anode
H2+20H — 2H20+2e
Cathode
2 — -
1/ 02+H20+2e 2 OH

Overall reaction

H, + 1/2 o, =H,O + electrical energy + heat

Electrical energy is produced and reactants are consumed only when current
flows in the external load.

The Allis-Chalmers cell consists of two porous electrodes separated
by an asbestos capillary matrix which contains an aqueous potassium hydroxide
(KOH) electrolyte. The anode (Hy electrode) is constructed of porous nickel
activated with a platinum-palladium catalyst, while the cathode (O, elec-
trode) is constructed of a high~surface area silver. The active area of each
electrode is approximately 0.20 square feet. Slotted magnesium electrode
support plates, adjacent to the electrodes, provide the cavities for distribu-
tion of the hydrogen and oxygen reactant gases over the surfaces of the
electrodes and for removal of the water vapor. In addition, the support

plates serve as electrical current collectors and as thermal cooling fins for
removal of waste heat.

. -188 -
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Fuel Cell Stack

The fuel cell stack (FCS) is constructed by connecting cell sections in
series to provide the nominal 29 volt dc terminal voltage for the desired
average power. Figure 8l is a schematic diagram of the FCM. The com-
plete fuel cell electric power system is shown in Figure 82.

System Design

Established design practice is to form fuel cell systems from standard
modules. The main advantages are good predictability of performance for
the intended system and accurate cost planning, since mass production tech-
niques can be used. The design of a typical fuel cell entails postulation of a
logical matrix of combinations and then determination of voltage regulation
and system reliability. Table 45 illustrates this practice.

Table 45. Design Configuration Matrix; Voltage Regulation and
Reliability of Alternative Fuel Cell Configurations

System Configuration |[Required Redundant Voltage
of 200 Watt Cells Regulation | Reliability
in Electric Parallel Active |Active |[Inactive (dc)
A 2 1 22-26.5 0.9928
B 2 1 25-28 0.9933
C* 2 1 1 25-28 0.9993
D 2 2 26-28.5 0.9998
#*Configuration used as baseline for weight estimates

Specific Weight

Design aspects of fuel cells and cryogenic fuel storage have been exam-
ined to determine where expected improvements will result in lighter weight
in the post-1980 period. The Allis-Chalmers 2. 0-kilowatt fuel cell and the
Apollo Block II cryogenic fuel storage subsystem were used as the reference
design. From these subassemblies, specific weight parameters have been
obtained, representing a state-of-the-art design for the 1970 period. By
examining each subsystem in detail, weight-saving improvements have been
estimated for post-1980 and are summarized in Table 46. Weight saving
can be expected with improvements in temperature, voltage and current
sensors, ampere-hour purge controllers, electric and electronic controls;
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Table 46. Fuel Cell Specific Weights
Item 1970 1980 1990+
Power output basis for calcula- 1.0 1.0 1.0
tions (kW)
Weight of module and access- 75 75 75
ories as rated (lb) Basis:
Allis Chalmers 2.0 kW fuel
cell
Weight of module (and access- 225 149 140
ories) configuration required (1b)
to meet reliability criterion
of 0.999
Specific weight of hydrogen tanks |[0.27 0.25 0.23
and accessories. Basis: Apollo
Block II tank system (lb/kWe hr)
Specific weight of oxygen tanks and|0. 24 0.22 0.20
accessories. Basis: Apollo
Block II tank system (lb/kWe hr)
Reactant consumption (lb/kWe hr)
Hydrogen 0.10 £0.02({0.10+0.02| 0,10 + 0.02
Oxygen 0.80+0.16 (0,80 +0.16|0.80 % 0,16
Peaking battery and charger 100 95 90
(postulate 800 Whr/kWe
system rating)
Specific weight of reactants, tanks|1.41 £0.18 1.37 £0,18| 1.33 £ 0. 18
and accessories (Ilb/kWe hr)
Constraints Relating to No Boiloff Conditions i.e.,
Insignificant Boiloff
Fuel tank system maximum
ambient temperature °L’) 40 40 40
Active service minimum H
flow rate (1b/hr tank) 0.06 0.05 0. 04
DESIGN GOALS
Design goal fuel tank redun- 200 100 100
dancy to meet 0.999
reliability criterion (%)
- 192 -
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Table 46.

Fuel Cell Specific Weights (Cont)

Item 1970 1980 1990+
Average minimum allowable 1.2 0.7 0.6
power (sustained 3.0 hr or
more), kw
Inactive subcritical storage 60 90 120
time duration, days
(minimum)
Reliability design goal of fuel 0.999 0.999 0.999
cell module configuration
Reliability design- goal of fuel 0.999 0.999 0.999
cell cryogenic storage system

increased use of integrated circuitry; improved metals and alloys; more
highly resistive insulating materials; lighter capacitors; and lightweight
design supports and fasteners. Also, expected improvements in module and
accessories include increased voltage stability and efficiency with service
time; however, these changes will not affect weight.

Expected improvements in cryogenic fuel storage and delivery systems
leading to reduced weight are metallurgical improvements in tank shell
materials, mechanical design techniques relating to mechanical stress and
control of thermal gradients, and improved sealing and welding techniques.
Improvements expected to significantly increase cycle life but reduce weight
only secondarily are improvements in peaking batteries and chargers; better
construction materials for separators, electrolytic combinations, wetting
agents; refined production processes relating to all parts; and integrated
circuitry in voltage sensing and control devices. Also, projected improve-
ments that will have a still smaller effect on weight include reduced fuel

storage heat leak and increased mechanical resistance to thermal and
mechanical shock,

All constraints governing the fuel cell system specific weight projec-
tions are given in Table 46 for a ''no boiloff" system (including tank
insulation weights).

Weight Scaling Factors

Specific weight parameters as summarized in Table 46
into an analytic linear expression as:

can be fitted

- = T
P (Mo+B)+MT
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M = Fuel cell system weight (1b)

s
= Power demand average (kWe)
T = Time duration of active service (may be intermittent) (hr)
MO = Specific module (and accessories) weight (1b/kWe)

B = Peaking battery and charger specific weight (1b, kWe)
.\/lT = Specific weight of reactant tankages (1b/kWe hr)

For the time periods listed, and based on Table 46, the weight
scaling function becomes

M

1970, ?S = 325+ (1.41 +£0.18) T
MS

1980; o = 244+ (1.37 £ 0.18) T
MS

1990+; 5 = 230 +(1.33 £0.18) T

For the post-1990 time period, system weights are projected for active
sersice durations of 2, 10, 30, and 60 days and are used as nominal values
S the 1940-2000 time period (Table 47).

Table 47. Fuel Cell Weight
Active Service
Days 1kWe 10 kWe 20 kWe
2 295 1b 2,950 5,900
135 kg 1,350 2,700
10 550 5,500 11,000
250 2,500 5, 000
30 1,185 11,850 23,700
540 5,400 2,370
60 2,150 21, 500 43,000 1b
975 9, 750 19, 500 kg
-194 -
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Chemical-Dynamic Power Systems

There is continuing funded support by NASA (MSC) on the pulsed tur-
boalternator being developed by TRW, Inc. It is intended to use the power
system as space emergency power and for short-time durations, typically
less than one week, following a long inactive storage time. A typical example
of emergency power relates to a unit which can run on fuel cell reactants
while fuel cells are either shut down or only partially operative. The second
typical use can be for an orbiting mission around a remote planet such as
Jupiter or Saturn. Cruise time to Jupiter might be two to three years.
During the cruise period, spacecraft power can be supplied by an RTG,
typically 500 Watt (electrical) or multiples thereof. After orbit has been
established, the turboalternator can be started to provide sufficient power to
observe planet characteristics, store and compute information if necessary,
and communicate results to Earth stations at a high bit rate.

Chemical-dynamic systems prototypes. including reciprocators, tur-
bines, cryocycles, and sterling cycles, have been surveyed. Of these, the
pulsed turbine is expected to be space-qualified by 1980 with characteristics
essentially as described in this report. Therefore, only the pulsed turbo-
alternator is examined in detail.

Basic Components

The power generation system shown in schematic form in Figure 83
consists of an alternator directly driven by a single stage, full-admission
impulse turbine. The combined shaft assembly is supported on a ball bearing
between the turbine wheel and alternator and a roller bearing on the opposite
end. The bearings and seal are lubricated and the alternator is cooled with
turbojet lubricating oil.

Power characteristics of the 6,0 kwe representative system design are
given in Table 48.

System Operation

The turbine is driven in an open cycle by hot gas produced in the gas
generator. The gas is the product of reaction of a fuel, 50-50 mixture of
anhydrous hydrazine and UDMH, with an oxidizer (N 04), The fuel and
oxidizer are stored as liquids in pressurized tanks. During a gas pulse,
metered flows of these liquids are admitted to the gas generator by opening
the bipropellant solenoid valve. The liquids enter the gas generator through
the injector which has been calibrated to pass the required weight flows of
fuel and oxidizer. The injector causes the liquids to mix in the gas generator
where they react hypergolicly.
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Table 48, TRW Pulsed Turboalternator (6.0 kwe)
Power Characteristics

Power output (dc) 6.0 kWe

Time, active 100 hr

Specific reactant consumption 11.0 + 1.0 1b/kWe hr

Reactant consumption 1100 Ib/kWe (100 hr operation)
Reactant tanks, (0/F = 1.6) 13.7 £t3/100 kW hr

6. 85 ft3 each
Reactant tanks, weight, lb ea 160 l1bs /100 kW hr
Turboalternator and Accessories 235 1b (for a 6 kWe)

Turbine Blade Temperature 1300.0 = 100°F

The injector has been designed to admit fuel and oxidizer at either of
two oxidizer/fuel (O/F) ratios. This dual design permits operation at
O/F = 0.9 through one set of injector orfices or at O/F = 2.7 through
another set of injector orifices. Therefore, two bipropellant valves are
needed, one at each O/F ratio. This two-valve design is required only for
laboratory research. The reference design used for weight analysis in this
study has one set of valves to operate at O/F = 1.6 so that equivalent
volumes of oxidizer and fuel are required (hence, only one size of reactant
storage tank is required).

The hot gas produced has a high energy level at a high temperature.
The adiabatic flame temperatures at 100 psia have been calculated to be
4235 R at O/F = 0.9 and 5520 R at O/F = 2.7.

The pulsing sequence is regulated by the speed control which controls
the length of coast time, or the time between pulses. The speed control
senses alternator output frequency. When it senses that the speed has
decreased to a predetermined set point, it causes the bipropellant valve to
open for 0.2 seconds allowing combustion to take place. The turboalternator
speed increases during this pulse period, then decreases during the coast
period to the low speed set point.

The voltage regulator senses alternator output voltage. It controls
alternator field excitation to maintain constant output voltage over the speed
variation.
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Lubrication and cooling are accomplished by a closed loop oil system,
Bearings and seal are fed by an oil spray. The alternator is cooled by oil
flowing through the annular jacket. The bearing and seal cavities and alter-
nator jacket are scavenged by a pump which sends the oil through a radiator
to a pressurized reservoir. The oil passes from the reservoir to the bearing
and alternator inlets at 25 to 30 psia. A carbon face seal located between
the turbine wheel, and ball bearing maintains a barrier between the alternator
and bearing cavity, and the external vacuum environment,

Heat rejection from the system is accomplished in two ways, The oil
system takes heat from the bearing, seal, and alternator areas as previously
described. In addition, a large portion of the heat rejection is accomplished
by radiation from the turbine and nozzle-scroll assembly,

The major portion of the heat removal is by direct radiation from the
turbine scroll which operates at a temperature up to 1500 F., Turbine blade
and disk cooling is also accomplished by direct radiation to space, or by
radiation to some other surface in the case of a submerged installation.

The output of the alternator is three phase 23 volts RMS line-to-line
which is rectified and filtered to 29 volts dc. The alternator is capable of
delivering 6 kwe continuously at 29 volts dc.

Specific Weight

The 6.0 kwe reference design is a carefully scaled design based on a
laboratory construction of 3.0 kwe rating.* Spherical reactant storage tanks
for this study are scaled models and modifications of these models based on
expected future improvements. Design parameters of the reactant storage

and delivery system are given in Table 49. The range of storage tempera-
tures is shown in Table 50.

Improvements in the pulsed turboalternator are expected to be pri-
marily mechanical. Improvements in production techniques are expected to
result in more reliable turbine and alternator units. Metallurgical improve-
ments may result in stronger, more heat-resistive bearings with less clear-
ance; more heat-resistive turbine blades with higher yield strength and
greater fatigue strength; and more reliable reactant storage tanks. Advances
in integrated circuitry should result in lighter electric controls and sensors.
Direct current converters should become lighter as a result of advances in
semiconductor technology and electrical packaging techniques. The afore-
mentioned expected improvements have been applied to each subsystem of the
reference design for the purpose of estimating specific weight parameters as
given in Table 50. Turboalternator and accessories are expected to have a

*3.0 kwe and 6. 0 kwe data are available and it is felt that a 1,0 kwe module can be scaled.
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Table 49. Mechanical Design Parameters of Chemical-Dynamic
Reactant Storage Tank System

Reactant volume (ft3)
Oxidizer 6. 85 each
Fuel 6. 85 each
Rupture strength (psi) 160, 000
Safety factor 1.5
Geometrical shape of tank Sphere
Tank material Titanium
Expulsion system Metal bellows
Tank configuration ' Two pair (Volume = 27. 4 ft3/
100 kw hr)
Calculated wall thickness (inch) 0.014
Selected design wall thickness (inch) 0.030
Design goal reliability (single unit) 0.999

moderate decrease in specific weight in the post 1980 time periods. Specific
reactant consumption is not expected to improve, since blade and rotor design
is already well advanced. Although tank reliability is expected to improve by
1990, weight of complete configurations may not be smaller since it is believed
that tank configuration design is well advanced.

Constraints for the chemical-dynamic system are postulated in
Table 50. Reactant storage time, reactant temperature, and turboalter-
nator service life are covered. These postulates are based upon present
state-of-art technology using the same qualitative techniques which have
been applied to specific weight estimates.

Reliability criteria have been postulated for the reactant tank storage
and delivery system on the basis of state-of-art technology (Table  50).
Pulsed turboalternator state of art is laboratory technology. There has not
been enough active service experience under real or simulated space condi-
tions to provide a mathematical basis for determining reliability. However,
there are indications that since support of pulsed turboalternator develop-
ment is continuing, reliability will be sufficiently high by the post-1990 year
to use them on planetary missions.

Weight Scaling

Based on a modular approach to supplying power greater than 1l kwe, a
linear function can be established for weight scaling. This is consistent with
the present state of the art wherein uncertainties in component design do not
allow projections of specific weight improvements with power level. The
scaling function is
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Table 50.

Chemical-Dynamic Specific Weight Parameters

Item 1970 1980 1990+
Power output (kWe) As Required | (1-10)
Specific weight of turboalternator |[39.0 35,0 35.0
and accessories, sized to peak
power., Postulated as twice
average power (lb/kWe)
Specfic reactant consumption 10.9 10.9 10.9
(lb/kWe hr)
Specific tank and accessories 1.60 £0,15 |[1,60 £ 0,15 | 1,60 £ 0,15
weight (1b/kWe hr)
Specific weight of reactants, 12.5 £ 0. 15 12.5 0,15 | 12,5 £ 0. 15
tanks and accessories
(lb/kWe hr)
Constraints
Reactant storage time max. (yr) 5.0 5.0 5.0
Allowable range of reactant 40-100 40-100 40-100
storage tank temperature (°F)
Turboalternator and accessories| 0,1 0.5 0.5
active service life (yr)
Reliability Criteria
Turboalternator (Present State of Art Technology
Is Laboratory Technology)
Reactant tank storage and 0. 995 0.995 0. 999
delivery system
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Mg

where
M = Weight of turboalternator and accessories (lb)
P = Average power (kWe)
M, = Specific weight of reactants, tanks and accessories (1b/kWe hr)
T = Active service time (while delivering power), hr
Ms = Chemical-dynamic electric power system weight (1b)

For the time periods listed,

M

1970; —; =39+ 12.5 T, lb/kWe
MS

1980; == 35 + 12.5 T, Ib/kWe

. M_

1990+; 5> = 35 + 12,5 T, Ib/kWe

For the post-1990 period, system weights are projected for active ser-
vice durations of 2, 10, 30, and 60 days and are used as nominal values for
the 1980-2000 time period (Table 51).

Table 51. Chemical-Dyuamic Systeir. Weight

Active Service Days 1 kWe 5 kWe 10 kWe
2 600 1b 3,000 6,000
272 kg 1, 360 2,720
10 3,035 15,175 30, 350
1,375 6, 900 13,750
30 9,035 18,070 90, 350
4,100 8,200 41,000

60 18,035 36,070 1b

8,200 16, 400 kg
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Batteries
Primary Electric Storage Batteries

Today's silver-zinc primary battery has a typical energy density of
110 to 220 Watt-hours per kilogram depending on temperature and discharge
rate. Higher specific power batteries have been produced in laboratories,
but they are not yet available. The best that can be hoped for is a 20 percent
improvement in specific power.

Primary batteries have short wet stand-time and have to be activated
before use. In this study, manual activation by the crew is assumed. Fifteen
percent of the battery weight is assumed to be electrolyte. Electrolyte
storage container weight is considered negligible. Specific weight ot the
assumed primary battery is 220 Watt-hours per kilogram. Primary batteries
are considered only for short missions. In this study no allowance is given
to storage caused degradation after activation. Also, no redundancy is
considered. Projected weights are given in Table 52.

For the time period of 1990 to 2000, other primary batteries with
energy densities of 500 Watt-hours per kilogram or more may become avail-
able. These are the zinc-oxygen, sodium-sulphur and other high-energy-
density systems now under development., Due to lack of data, they are not
considered here.

Table 52. Silver-Zinc Primary Battery Weights

Mission Weight for 28-volt System
Mission Component (kilograms)

2 kWe 5 kWe 10 kWe
2-day Battery cells 430 1,080 2,160
Battery container 30 | 60 120
Interconnecting hardware 30 75 150
Total : 490 1,215 2,430
10-day 2,430 6,075 12,150

Silver-Zinc Secondary Electric Storage Batteries

Silver-zinc electric storage battery cells presently have up to 175 Watt
hours per kilogram energy density. For the time period considered, this
energy density is used with the following limitations: activated battery life
not to exceed 1 year; weight penalty of 15 percent to account for battery
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container and interconnecting hardware; a battery charge rate of C/6 (1/6
capacity); and a battery charger weight of 7.5 kilogram/kilowatt., Based on
this for a 6 kilowatt hour battery system, the weight is given in Table 53.

Table 53, Silver-Zinc Secondary Battery Weight

Component Weight (kilograms)

Cells 34.2 (175 Whr/kg)
Connectors and Container 5.2
Battery Charger 7.5

Total Battery System 46.9 (128 Whr/kg)

With 25 percent depth of discharge, the usable energy density of a
typical secondary silver-zinc battery system is 32 Watt-hour per kilogram.
Such a battery will be capable of approximately 800 charge-discharge cycles.
For other cycle lives, consult Figures 84 and 85.

Silver-Cadmium Secondary Electric Storage Batteries

Secondary storage batteries are considered in connection with solar
power systems. They must supply power in planetary orbit while the
spacecraft passes through the shadow., They also can be used to supply peak
loads. The best silver-cadmium cell today can supply 88 Watt hours per
kilogram energy. Allowing a weight penalty of 15 percent for container and
interconnecting hardware and considering a battery charge rate of C/6, the
battery system specific weight can be determined from a 6 kilowatt system
with 25 percent depth of discharge, as given in Table 54,

The specific energy density of this secondary silver -cadmium battery
system is 18.7 Watt hours per kilogram. This battery will last 1500 charge-
discharge cycles, based on present-day technology. With increased depth
of discharge, the number of discharge cycles decreases (Figures 86 and
87). These data are expected to provide a 0.999 reliability for the battery
cells,

Battery energy efficiency is a function of operating temperature and
charge-discharge rate. At temperatures between 60 F and 80 F, and consid-
ering a maximum of 33 percent discharge with a charge rate less than 1.5 of
discharge rate, an energy efficiency of 77 percent can be expected. (This is
based on tests conducted on Yardney 15 ampere-hour silver-cadmium cells.)
A switching regulator type battery charger was considered. Such a charger
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Battery Charge-to-Discharge Rate Ratio = 1:6
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Figure 87, Silver-Cadmium Battery System Weight Versus
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Table 54, Silver-Cadmium Secondary Battery Weight (6. 0 KWH)

Component Weight (kilograms)
24 kW hr Cells 273.0(22 WH/kg)
Connectors and Container 41.6
Battery Charger 7.5
Total Battery System 322,1(18.7 WH/kg)

can be built today with an efficiency of 92 percent or greater. Thus, the

charge-discharge efficiency of the battery-and-charger system will be
71 percent or greater.

Thermionic Converters

Thermionic power subsystems offer a potential for high-performance
specific weight., The cesium vapor diode used in these power converters
operates efficiently at temperatures in excess of 2200 F. The high operating
temperature requirement (Figure 88 ) is the underlying reason for current
limited experience with these devices, Most promising is the solar therm-
ionic converter which requires solar concentrators with close orientation
(Figure 89). Isotope and nuclear reactor heated thermionic converters
are of cylindrical design with the heat source or heat exchanger fluid sur-
rounded by the emitter, with the converter being cooled from the outside.
Development is needed of materials to facilitate containment of the reactor
fuel or isotopes at high temperatures, Thermionic diodes are presently
being tested to demonstrate a life expectancy of 10, 000 hours. For longer
missions, this life expectancy is not sufficient and redundant standby power
systems with an external heat source should be considered. Based on todays
state of the art and the development effort spent on these systems, their
availability is not assured before the end of the time period considered.,

General Electric is developing the STAR~R reactor thermionic power
plant with an in-pile converter design. This power system incorporates a
nuclear reactor fueled by uranium oxide or uranium carbide controlled by
beryllium reflectors. Since most of these data and related publications are
closely controlled, only approximate information has been obtained.

Two general GE STAR (space thermionic auxiliary reactor) systems
are under consideration; STAR-R applicable to 10 to 100 kwe, and STAR-C
application to 100 kwe to 100 mWe, The reactor has a fast UO, fueled heat
source. Power conversion is effected by tubular converter diodes with
Cesium gas in the 0.005 to 0,010 inch gap, and tungsten, tungsten-rhenium,
and molybdenum are used as refractory metals, The approximate specific
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weight, excluding radiation shielding for STAR-R is 90 kg/kw (200 1b/kw);
for STAR-C, 22.7 kg/kw (50 1b/kw), Overall efficiency is 10 percent,
Emitter temperature is 1600 to 1800 C; collector temperature is 700 C,
Reliability figures are not available at this time, and it appears that a large
amount of development work must still be done before any confidence in this
power system can be established, For this study, a reliability of 90 percent
for 10,000 hours has been assumed, Since the temperatures are very high,
material technology advances are required, and may not be achieved by the
target dates. The power system weights based on STAR-R technology are
given in Table 55,

Table 55, Thermionic Power System Weights
Based on STAR-R Technology

Rating 20 kw 50 kw

System weight 1800 kg 4500 kg
Standby systems (2) 3600 kg 9000 kg
Radiation shield 5900 kg 11700 kg
Boom and cables 600 kg 1200 kg
l-year mission weight 11900 kg 26400 kg
One additional standby system for

each additional year of mission

2-year mission 12700 kg 30900 kg
3-year mission 14500 kg 35400 kg
4-year mission 16300 kg 39900 kg
5-year mission 18100 kg 44400 kg

Note: The high weight values are due to present day integrated heat
source - converter design.

While nuclear reactor and isotopic thermionic systems are not
expected to be available before the end of the time period considered, solar
thermionic systems may be available sooner. Diodes as shown in Figure 90
were tested for several thousand hours. As seen in Table 56, the converter
weight contributes relatively little to the overall system weight. The rela-
tively small converter modules can be easily replaced and require little
redundancy for high reliability. These systems require highly accurate
orientation. The maximum weight penalty for orientation using 7 kg per
10 square meter mirror area would be as given in Table 57,
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Table 56,

Solar Thermionic Generator at 1 AU
Consisting of 225 Watt Modules

225 Watt 2.5 kw 5 kw 10 kw 20 kw

Mirror diameter 2.8 meter
Weight with berillium
concentrator 5.2 kg
Support 3.6 kg
Converter 1.3 kg
Structure 2.6 kg
Ther mal insulation 3.4 kg

16.1 kg 175 kg | 350 kg | 700 kg | 1400 kg
DC to DC converter 3 23 40 80 160
Controls 2.4 18 30 60 120

21.5 kg 216 kg | 420 kg | 840 kg | 1680 kg
Add 30% redundancy for | 4.9 kg 53 105 210 420
l-year mission

26.4 kg 269 kg | 525 kg | 1050 kg | 2100 kg
Add 100% redundancy for|16.1 175 350 700 1400
2-year mission

37.6 kg 391 kg | 770 kg | 1540 kg | 3080 kg
Add 200% redundancy for|53.7 566 1120 2140 4480
3-year mission
Add 300% redundancy for|69. 8 741 1470 2840 5880
4-year mission
Add 400% for 85.9 916 1820 3540 7280
5-year mission '
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Table 57, Maximum Weight Penalty for
Mirror Orientation

Mission Duration Weight Penalty
(years) (percent of mirror weight)
1 15
2 26
3 34
4 40
5 45
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CONCLUSIONS

Mission Module Power Sources

Applicable auxiliary power system candidates were selected for com-
parison. Two energy sources (nuclear and solar) were considered for the
mission module with many combinations of power conversion designs. As a
result, several conclusions can be made.

Nuclear reactors should not be considered at power levels below about
15 kWe. When compared to radioisotopes at low levels, the reactors prove
to be heavier (because of higher levels of radiation) and more complex.
Using a reactor necessitates separation of source and crew for distances in
the order of 50 to 125 feet, Reactor shutdown is required for any spacecraft
operations outside the protection of a shadow shield,

It can also be stated that solar concentrators should not be included in
any further trade-off study. Concentrators require a higher degree of orien-
tation accuracy when compared to solar cells for the same power degradation
and have a very large area requirement, As a solar powered generator,
photovoltaic systems generally can be used wherever concentrators might
apply. The relative state of development and weight comparisons show a
major advantage to solar cells,

Thermionics can also be excluded for 1980 missions. However, ulti-
mately the power system converters may be thermionic in design, and
present indications are that the technology will permit hardware by the
year 2000,

Candidate systems which should receive major attention (for power
range of 2 to 15 kWe) can be limited to radioisotopes combined with dynamic
conversion (Rankine and Brayton cycle), thermoelectrics and solar cells,

Converters
Brayton Cycle

This conversion offers the highest overall efficiency, The major dis-
advantages are its high turbine inlet temperature and large radiator area
requirements., For reference designs the highest temperature in the cycle
is approximately 1600 F, which will necessitate a new technology for isotope
encapsulation. Reactor Brayton systems are limited to the 1300 F reactor
heat source temperature, Increasing this limit to 1600 F could only be
achieved by a new reactor design from present SNAP 8 and 10B reactors.
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This does not appear as likely as for an increased isotope heat source
temperature, Overall development of the required conversion equipment is
not as far along as that for the Rankine cycle. It is felt that additional
development time will be required for this system, when compared to the
Rankine cycle. Radiator area required for a 6 kWe system is approximately
850 ft2, For higher power output, radiator area requirement may exceed
available area, and deployed radiators would then be required. Meteoroid
weight penalties will be great for such large radiator areas when considering
missions going into the asteroid belt.

Rankine Cycle

Many working fluids were evaluated using the Rankine conversion cycle,
While potassium offers the minimum weight system, its development is not
sufficient for serious consideration. Only Dowtherm A and mercury appear
competitive for the final selection, Dowtherm A systems operate at low
enough temperatures where isotope technology is firmly established. The
weights of these two systems are approximately the same and in the study
mercury was taken to be representative of the Rankine cycle systems,
Mercury offers a tremendous backlog of data through the SNAP 2 and 8 pro-
grams, It results in minimum radiator area, However, its temperature
requirement is 1300 F, and this must compare to the 700 F of the Dowtherm A,
From a development standpoint, the lower temperature system should result
in minimum development risk and time, The turbine design is relatively
simple to modify, since it is a single-stage design relying on nozzle inlet
design for change in power output. The fluid, Dowtherm A, does suffer
because of gaseous decomposition at temperatures in excess of 700 F with
some decomposition down to 650 F, It is not expected that the decomposition
would be in the form of '"crud' as one expects in a mercury loop. The isotope
development at 700 F is minimized. Existing isotope encapsulation techniques
are adequate for this temperature. Final selection between these two working
fluids must be made on an overall program level., Both appear to be accept-
able on the subsystem level. Weight considerations will not be the deciding
factor. Development cost and scheduling will have to be compared on the
program level. Potential meteoroid damage to radiator areas will have to
be assessed to determine the major advantage of the mercury system because
of its sm-ller radiator area requirement.

Thermoelectrics

The advantages of a static conversion device cannot be overlooked,
Thermoelectrics offer a relatively easy isotope hardware development for
the power conversion. Unfortunately, they require high isotope temperature
to maintain 1500 F on the hot junction to achieve reasonable efficiency.

This high temperature imposes a major problem in the isotope encapsulation
and development, The overall efficiency of this conversion will vary,
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depending upon materials. Highest efficiencies can be realized by cascading
GeSi and PbTe so that both operate at their best temperatures. This results
in a cycle efficiency of from 7 to 8 percent compared to a single-element -
efficiency of 4 percent. At best the thermoelectrics will mean an increase
in isotope inventory of about twice that for the dynamic conversion. This
becomes a critical consideration when isotope availability and cost is con-
sidered, Radiator area requirement for the cascaded system is comparable
with the Rankine Dowtherm A and is abcut double that required for mercury
systems. Thermoelectrics represent e highly developed power conversion
device and can be considered as a backup corversion to the dynamic CRU's,
or for use with the planetary excursion module descent stage.

Solar Cells

Up to this peint in the space program, solar cells are the state-of-the-
art hardware which are both available and of possible application to the
missions of this study. The major disadvantages of solar cells involve
restraints on the total spacecraft configuration. For missions where zero
g is adequate, the spacecraft can be pointing to the sun, and solar distances
are less than 1,5 AU, solar cells are attractive candidates., Lightweight,
large solar arrays needed for these missions, however, are not present-day
technology.

Major problems of this system are the orientation requirement if an
artificial-g configuration is chosen. Counterrotation and/or slip rings will
be necessary at a reliability goal consistent with man requirements. A
backup system of solar cells will be needed. Meteoroid damage assessments
must be made to determine the allowakle degradation of the solar array.

This will then permit an evaluation of backup system designs. Earth and
planetary orbital operations will be greally complicated. Another source of
power will be needed, unless deployment of the solar array is feasible prior
to Earth orbit escape. Fuel cells could be included for the earth orbital
phase, but this means additional weight, depending on earth orbital mission
duration. This also means the complications of adding another power system
and the problem of how to rid the spacecraft of this system before injection,
If the array is deployed during Earth orbit, it means additional constraints
on vehicle configuration. The array must be located so that there are no
major interferences. In the stowed configuration, the solar array must be
protected from any damage which could be caused by shock and vibration
during launch. In the deployed configuration, the solar array rigidity must
be sufficient so that the array can be oriented and maintained in a plane
normal to the direction of the sun within 10 degrees. The solar array
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design must be compatible with the spacecraft. Spacecraft and array thermal
interaction must be considered on a system basis, Structural design must

be such that dynamic coupling with spacecraft guidance and control equipment
is minimized and the vehicle mass center displacements are minimized.
Clearances must be provided with the exhaust from attitude control jets and
thrusters. No interferences can be permitted with antenna view angles and
sensors and camera view angles,

Another major consideration of using solar cells will be that of changing
solar intensity and panel temperature. As temperature drops, voltage of an
individual cell increases. With a fixed number of cells in series to obtain
required voltage, it is necessary to either continually change the number of
cells in series or to accept a very wide range of voltage output from the
array. Large voltage regulators will be required; fortunately, surplus poweris
available for the losses involved, but weight penalties of the regulators will
result. Theearthorbital operation will be in a 60-40 minute light/dark
orbit, and larger batteries will be needed for the shadow period.

Planetary Excursion Module Power System

Fuel Cells

Fuel cells, like non-rechargeable batteries and chemical-dynamic
systems, are energy limited. Wear-out mechanisms limit time of useful or
active service., Chemical and electrochemical degradation limits active
service time of electrodes, seals, and fuel entry ports. Heat rejection
electromechanical pumps run continuously while the fuel cell is active, and
malfunction and wear out as a result of electrical insulation breakdown,
mechanical malfunction, and wear-out. Radiators can malfunction by loss
of coolant fluid due to mechanical defects and impact by meteoroids, Fuel
cells have strong advantages for short missions, typically one to three weeks,
resulting in their acceptance for Gemini and Apollo missions.

Chemical-Dynamic Systems

The pulsed turboalternator chemical-dynamic system can be used most
advantageously where the intended use is intermittent duty not to exceed an
approximate cumulative total service time of 48 hours. The system is easily
started, easily shut down, and requires very little monitoring.

If Aerozine-50 and nitrogen tetroxide are used as propellants for the
reaction motors, separate storage tanks for the chemical dynamic system
are unnecessary and a commonality advantage can be realized.
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If the intended use is intermittent duty for short active durations not
exceeding four hours each, total service time less than 48 hours, and a long
space mission time of typically five years, the lightest system is
chemical-dynamic. ’

Although the system has not reached space-qualification status, and
quantitative reliability data are not available, expectations based on labora-
tory testing are that the system, if used intermittently, will be reliable, and
complete module redundancy will not be required.

Electric Storage Batteries

Electric storage batteries are used in every space vehicle today and
will be used to various extents in all future missions, Batteries can supply
all spacecraft power for short missions or can provide power during emer-
gencies, peak load conditions, or in connection with solar power source nor-
mal vehicle power during planetary occultation periods, Two basic kinds of
batteries were considered in this study: silver-zinc and silver-cadmium
batteries. The first type is presently used in primary batteries exclusively
because of a high energy density. Silver-zinc batteries have a short activated
storage life, Primary batteries require activation immediately before use.
Manual activation was considered for this study. Secondary silver-zinc bat-
teriés have demonstrated activated storage life of six months to a year.
Based on present-day technology, their performance is expected to be highly
reliable for one-year missions by 1980,

Secondary battery life is a function of the number of charge-discharge
cycles, depth of discharge, and rate of charge and discharge. For longer
battery life, batteries are derated. Silver-cadmium batteries are not used
as primary batteries. Their specific energy is only half as much as that
for silver-zinc batteries, These batteries, however, have long activated life
and are prime candidates for standby and peak power source. Nickel-
cadmium batteries are not considered for this study; their specific energy is
much lower, They would be applicable only for long-duration low-altitude
earth orbital missions, New kinds of primary batteries now under develop-
ment were also excluded due to lack of sufficient data and experience with
them,

Selected Electrical Power Subsystems

An estimate of the electrical power loads was required prior to the
selection of systems for use during subsequent module and system synthesis
analyses. The estimated basic loads for the mission module.are summarized
in Table 58 based on the use of a partially closed (water and oxygen recovery)
EC/LSS. The loads shown in the table do not include the requirements for
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Table 58. Mission Module Load Analysis

Créw Size
Load Element 4 6 10 20

EC/LSS 2,500 3,500 5, 000 9, 000
Communications 2,000 2, 000 2,000 2,000
Ilumination 250 350 500 1,000
Instrumentation 150 225 350 450
Housekeeping & Misc. 500 600 » 750 1, 000
Subtotal 5, 400 6, 675 8, 600 13, 450

" Losses (Line) 3% 150 200 250 400
Total 5,550 6,875 8, 850 13 850

contingencies or experiment support. Even with a crew size of twenty men,
the basic loads are less that 15kWe which was considered to be within the
range of applicability of the radioisotope systems.

The electrical power subsystems which were used in the manned
modules during subsequent module and system synthesis analyses (Appendix D)
are shown in Table 59. Reactor systems were not selected for use in the
mission module since they are heavier than the isotope systems, couldrequire
shutdown and retraction during propulsive (or aerobraking) maneuvers, and
present potential operational constraints (e, g., rendezvous). Solar systems
were not assumed since they are not generally applicable to all missions
considered in this study. Although solar systems are appropriate for some
of the missions, large arrays (on the order of 170 m%) would be required.

The isotope cascaded thermoelectric system was selected for use in
the planetary excursion module descent stage since it is the most appropriate
system for the range of stay times considered (0 to 60 days). Chemical-
dynamic systems, fuel cells, and batteries would result in an excessive
weight penalty for the longer stay times. Solar cells, although the lightest
system, would impose operational constraints (e.g., landing site location),
are not generally applicable, and could present significant design problems.
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Only batteries were considered for use in the Earth reentry module and
the planetary excursion module ascent stage., The short occupancy times
- (up to 24-hours) precluded the necessity of considering more exotic systems.

Table 59. Selected Electrical Power Subsystems

Module Subsystem Type
Mission Module Isotope/Mercury Rankine
Planetary Excursion Module Isotope Cascaded Thermoelectric

Descent Stage

Planetary Excursion Module Batteries
Ascent Stage

Earth Reentry Module Batteries
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